PyTorch 之 强大的 hub 模块和搭建神经网络进行气温预测

news2024/11/16 0:18:01

文章目录

  • 一、强大的 hub 模块
    • 1. hub 模块的使用
    • 2. hub 模块的代码演示
  • 二、搭建神经网络进行气温预测
    • 1. 数据信息处理
    • 2. 数据图画绘制
    • 3. 构建网络模型
    • 4. 更简单的构建网络模型

本文参加新星计划人工智能(Pytorch)赛道:https://bbs.csdn.net/topics/613989052
在这里插入图片描述

一、强大的 hub 模块

  • hub 模块是调用别人训练好的网络架构以及训练好的权重参数,使得自己的一行代码就可以解决问题,方便大家进行调用。
  • hub 模块的 GITHUB 地址是 https://github.com/pytorch/hub。
  • hub 模块的模型 网址是 https://pytorch.org/hub/research-models。

1. hub 模块的使用

  • 首先,我们进入网址。会出现如下的界面(这其中就是别人训练好的模型,我们通过一行代码就可以实现调用)。

在这里插入图片描述

  • 然后,我们随便点开一个模型,会出现如下界面。

在这里插入图片描述

  • 其中,第一个按钮是对应的 GITHUB 代码,第二个是使用谷歌配置好的实验环境,第三个进行模型演示。

2. hub 模块的代码演示

  • 首先,我们进行基本的导入。
import torch
model = torch.hub.load('pytorch/vision:v0.4.2', 'deeplabv3_resnet101', pretrained=True)
model.eval()
  • 我们可以使用 hub.list() 查看对应 pytorch 版本的模型信息。
torch.hub.list('pytorch/vision:v0.4.2')
#Using cache found in C:\Users\Administrator/.cache\torch\hub\pytorch_vision_v0.4.2
#['alexnet',
# 'deeplabv3_resnet101',
# 'densenet121',
# 'densenet161',
# 'densenet169',
# 'densenet201',
# 'fcn_resnet101',
# 'googlenet',
# 'inception_v3',
# 'mobilenet_v2',
# 'resnet101',
# 'resnet152',
# 'resnet18',
# 'resnet34',
# 'resnet50',
# 'resnext101_32x8d',
# 'resnext50_32x4d',
# 'shufflenet_v2_x0_5',
# 'shufflenet_v2_x1_0',
# 'squeezenet1_0',
# 'squeezenet1_1',
# 'vgg11',
# 'vgg11_bn',
# 'vgg13',
# 'vgg13_bn',
# 'vgg16',
# 'vgg16_bn',
# 'vgg19',
# 'vgg19_bn',
# 'wide_resnet101_2',
# 'wide_resnet50_2']
  • 我们可以从 pytorch 的网站上下载一个实例。
# Download an example image from the pytorch website
import urllib
url, filename = ("https://github.com/pytorch/hub/raw/master/dog.jpg", "dog.jpg")
try: urllib.URLopener().retrieve(url, filename)
except: urllib.request.urlretrieve(url, filename)
  • 我们执行样本,这里需要注意的是 torchvision。
# sample execution (requires torchvision)
from PIL import Image
from torchvision import transforms
input_image = Image.open(filename)
preprocess = transforms.Compose([
    transforms.ToTensor(),
    transforms.Normalize(mean=[0.485, 0.456, 0.406], std=[0.229, 0.224, 0.225]),
])
​
input_tensor = preprocess(input_image)
input_batch = input_tensor.unsqueeze(0) # create a mini-batch as expected by the model
  • 我们需要将输入和模型移动到GPU以获得速度(如果可用)。
# move the input and model to GPU for speed if available
if torch.cuda.is_available():
    input_batch = input_batch.to('cuda')
    model.to('cuda')with torch.no_grad():
    output = model(input_batch)['out'][0]
output_predictions = output.argmax(0)
  • 我们可以创建一个调色板,为每个类选择一种颜色。
# create a color pallette, selecting a color for each class
palette = torch.tensor([2 ** 25 - 1, 2 ** 15 - 1, 2 ** 21 - 1])
colors = torch.as_tensor([i for i in range(21)])[:, None] * palette
colors = (colors % 255).numpy().astype("uint8")
  • 我们可以使用 hub 模块中的模型绘制每种颜色 21 个类别的语义分割预测。​
# plot the semantic segmentation predictions of 21 classes in each color
r = Image.fromarray(output_predictions.byte().cpu().numpy()).resize(input_image.size)
r.putpalette(colors)import matplotlib.pyplot as plt
plt.imshow(r)
plt.show()

在这里插入图片描述

二、搭建神经网络进行气温预测

1. 数据信息处理

  • 在最开始,我们需要导入必备的库。
import numpy as np
import pandas as pd 
import matplotlib.pyplot as plt
import torch
import torch.optim as optim
import warnings
warnings.filterwarnings("ignore")
%matplotlib inline
  • 我们需要观察一下自己的数据都有哪些信息,在此之前,我们需要进行数据的读入,并打印数据的前五行进行观察。
features = pd.read_csv('temps.csv')
features.head()
#year	month	day	week	temp_2	temp_1	average	actual	friend
#0	2016	1	1	Fri	45	45	45.6	45	29
#1	2016	1	2	Sat	44	45	45.7	44	61
#2	2016	1	3	Sun	45	44	45.8	41	56
#3	2016	1	4	Mon	44	41	45.9	40	53
#4	2016	1	5	Tues	41	40	46.0	44	41
  • 在我们的数据表中,包含如下数据信息:
  • (1) year 表示年数时间信息。
  • (2) month 表示月数时间信息。
  • (3) day 表示天数时间信息。
  • (4) week 表示周数时间信息。
  • (5) temp_2 表示前天的最高温度值。
  • (6) temp_1 表示昨天的最高温度值。
  • (7) average 表示在历史中,每年这一天的平均最高温度值。
  • (8) actual 表示这就是我们的标签值了,当天的真实最高温度。
  • (9) friend 表示这一列可能是凑热闹的,你的朋友猜测的可能值,咱们不管它就好了。
  • 在获悉每一个数据的信息之后,我们需要知道一共有多少个数据。
print('数据维度:', features.shape)
#数据维度: (348, 9)
  • (348, 9) 表示一共有 348 天,每一天有 9 个数据特征。
  • 对于这么多的数据,直接进行行和列的操作可能会不太容易,因此,我们可以导入时间数据模块,将其转换为标准的时间信息。
# 处理时间数据
import datetime
​
# 分别得到年,月,日
years = features['year']
months = features['month']
days = features['day']# datetime格式
dates = [str(int(year)) + '-' + str(int(month)) + '-' + str(int(day)) for year, month, day in zip(years, months, days)]
dates = [datetime.datetime.strptime(date, '%Y-%m-%d') for date in dates]
  • 我们可以读取新列 dates 中的部分数据。
dates[:5]
#[datetime.datetime(2016, 1, 1, 0, 0),
# datetime.datetime(2016, 1, 2, 0, 0),
# datetime.datetime(2016, 1, 3, 0, 0),
# datetime.datetime(2016, 1, 4, 0, 0),
# datetime.datetime(2016, 1, 5, 0, 0)]

2. 数据图画绘制

  • 在基本数据处理完成后,我们就开始图画的绘制,在最开始,需要指定为默认的风格。
plt.style.use('fivethirtyeight')
  • 设置布局信息。
# 设置布局
fig, ((ax1, ax2), (ax3, ax4)) = plt.subplots(nrows=2, ncols=2, figsize = (10,10))
fig.autofmt_xdate(rotation = 45)
  • 设置标签值信息。
#标签值
ax1.plot(dates, features['actual'])
ax1.set_xlabel(''); ax1.set_ylabel('Temperature'); ax1.set_title('Max Temp')
  • 绘制昨天也就是 temp_1 的数据图画。​
# 昨天
ax2.plot(dates, features['temp_1'])
ax2.set_xlabel(''); ax2.set_ylabel('Temperature'); ax2.set_title('Previous Max Temp')
  • 绘制前天也就是 temp_2 的数据图画。​
# 前天
ax3.plot(dates, features['temp_2'])
ax3.set_xlabel('Date'); ax3.set_ylabel('Temperature'); ax3.set_title('Two Days Prior Max Temp')
  • 绘制朋友也就是 friend 的数据图画。
# 我的逗逼朋友
ax4.plot(dates, features['friend'])
ax4.set_xlabel('Date'); ax4.set_ylabel('Temperature'); ax4.set_title('Friend Estimate')
  • 在上述信息设置完成后,开始图画的绘制。
plt.tight_layout(pad=2)

在这里插入图片描述

  • 对原始数据中的信息进行编码,这里主要是指周数信息。
# 独热编码
features = pd.get_dummies(features)
features.head(5)
#year	month	day	temp_2	temp_1	average	actual	friend	week_Fri	week_Mon	week_Sat	week_Sun	week_Thurs	week_Tues	week_Wed
#0	2016	1	1	45	45	45.6	45	29	1	0	0	0	0	0	0
#1	2016	1	2	44	45	45.7	44	61	0	0	1	0	0	0	0
#2	2016	1	3	45	44	45.8	41	56	0	0	0	1	0	0	0
#3	2016	1	4	44	41	45.9	40	53	0	1	0	0	0	0	0
#4	2016	1	5	41	40	46.0	44	41	0	0	0	0	0	1	0
  • 在周数信息编码完成后,我们将准确值进行标签操作,在特征数据中去掉标签数据,并将此时数据特征中的标签信息保存一下,并将其转换成合适的格式。
# 标签
labels = np.array(features['actual'])# 在特征中去掉标签
features= features.drop('actual', axis = 1)# 名字单独保存一下,以备后患
feature_list = list(features.columns)# 转换成合适的格式
features = np.array(features)
  • 我们可以查看此时特征数据的具体数量。
features.shape
#(348, 14)
  • (348, 14) 表示我们的特征数据当中一共有 348 个,每一个有 14 个特征。
  • 我们可以查看第一个的具体数据。
from sklearn import preprocessing
input_features = preprocessing.StandardScaler().fit_transform(features)
input_features[0]
#array([ 0.        , -1.5678393 , -1.65682171, -1.48452388, -1.49443549,
#       -1.3470703 , -1.98891668,  2.44131112, -0.40482045, -0.40961596,
#       -0.40482045, -0.40482045, -0.41913682, -0.40482045])

3. 构建网络模型

x = torch.tensor(input_features, dtype = float)
​
y = torch.tensor(labels, dtype = float)# 权重参数初始化
weights = torch.randn((14, 128), dtype = float, requires_grad = True) 
biases = torch.randn(128, dtype = float, requires_grad = True) 
weights2 = torch.randn((128, 1), dtype = float, requires_grad = True) 
biases2 = torch.randn(1, dtype = float, requires_grad = True) 
​
learning_rate = 0.001 
losses = []for i in range(1000):
    # 计算隐层
    hidden = x.mm(weights) + biases
    # 加入激活函数
    hidden = torch.relu(hidden)
    # 预测结果
    predictions = hidden.mm(weights2) + biases2
    # 通计算损失
    loss = torch.mean((predictions - y) ** 2) 
    losses.append(loss.data.numpy())
    
    # 打印损失值
    if i % 100 == 0:
        print('loss:', loss)
    #返向传播计算
    loss.backward()
    
    #更新参数
    weights.data.add_(- learning_rate * weights.grad.data)  
    biases.data.add_(- learning_rate * biases.grad.data)
    weights2.data.add_(- learning_rate * weights2.grad.data)
    biases2.data.add_(- learning_rate * biases2.grad.data)
    
    # 每次迭代都得记得清空
    weights.grad.data.zero_()
    biases.grad.data.zero_()
    weights2.grad.data.zero_()
    biases2.grad.data.zero_()#loss: tensor(8347.9924, dtype=torch.float64, grad_fn=<MeanBackward0>)
#loss: tensor(152.3170, dtype=torch.float64, grad_fn=<MeanBackward0>)
#loss: tensor(145.9625, dtype=torch.float64, grad_fn=<MeanBackward0>)
#loss: tensor(143.9453, dtype=torch.float64, grad_fn=<MeanBackward0>)
#loss: tensor(142.8161, dtype=torch.float64, grad_fn=<MeanBackward0>)
#loss: tensor(142.0664, dtype=torch.float64, grad_fn=<MeanBackward0>)
#loss: tensor(141.5386, dtype=torch.float64, grad_fn=<MeanBackward0>)
#loss: tensor(141.1528, dtype=torch.float64, grad_fn=<MeanBackward0>)
#loss: tensor(140.8618, dtype=torch.float64, grad_fn=<MeanBackward0>)
#loss: tensor(140.6318, dtype=torch.float64, grad_fn=<MeanBackward0>)
  • 我们查看预测数据的具体数量,应该是一共有 348 个,每个只有一个值,也就是 (348,1)。
predictions.shape
#torch.Size([348, 1])

4. 更简单的构建网络模型

input_size = input_features.shape[1]
hidden_size = 128
output_size = 1
batch_size = 16
my_nn = torch.nn.Sequential(
    torch.nn.Linear(input_size, hidden_size),
    torch.nn.Sigmoid(),
    torch.nn.Linear(hidden_size, output_size),
)
cost = torch.nn.MSELoss(reduction='mean')
optimizer = torch.optim.Adam(my_nn.parameters(), lr = 0.001)
# 训练网络
losses = []
for i in range(1000):
    batch_loss = []
    # MINI-Batch方法来进行训练
    for start in range(0, len(input_features), batch_size):
        end = start + batch_size if start + batch_size < len(input_features) else len(input_features)
        xx = torch.tensor(input_features[start:end], dtype = torch.float, requires_grad = True)
        yy = torch.tensor(labels[start:end], dtype = torch.float, requires_grad = True)
        prediction = my_nn(xx)
        loss = cost(prediction, yy)
        optimizer.zero_grad()
        loss.backward(retain_graph=True)
        optimizer.step()
        batch_loss.append(loss.data.numpy())
    
    # 打印损失
    if i % 100==0:
        losses.append(np.mean(batch_loss))
        print(i, np.mean(batch_loss))
#0 3950.7627
#100 37.9201
#200 35.654438
#300 35.278366
#400 35.116814
#500 34.986076
#600 34.868954
#700 34.75414
#800 34.637356
#900 34.516705
  • 我们可以得到如下的预测训练结果,将其用图画的形式展现出来。
x = torch.tensor(input_features, dtype = torch.float)
predict = my_nn(x).data.numpy()
# 转换日期格式
dates = [str(int(year)) + '-' + str(int(month)) + '-' + str(int(day)) for year, month, day in zip(years, months, days)]
dates = [datetime.datetime.strptime(date, '%Y-%m-%d') for date in dates]# 创建一个表格来存日期和其对应的标签数值
true_data = pd.DataFrame(data = {'date': dates, 'actual': labels})# 同理,再创建一个来存日期和其对应的模型预测值
months = features[:, feature_list.index('month')]
days = features[:, feature_list.index('day')]
years = features[:, feature_list.index('year')]
​
test_dates = [str(int(year)) + '-' + str(int(month)) + '-' + str(int(day)) for year, month, day in zip(years, months, days)]
​
test_dates = [datetime.datetime.strptime(date, '%Y-%m-%d') for date in test_dates]
​
predictions_data = pd.DataFrame(data = {'date': test_dates, 'prediction': predict.reshape(-1)}) 
# 真实值
plt.plot(true_data['date'], true_data['actual'], 'b-', label = 'actual')# 预测值
plt.plot(predictions_data['date'], predictions_data['prediction'], 'ro', label = 'prediction')
plt.xticks(rotation = '60'); 
plt.legend()# 图名
plt.xlabel('Date'); plt.ylabel('Maximum Temperature (F)'); plt.title('Actual and Predicted Values');

在这里插入图片描述

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.coloradmin.cn/o/431483.html

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈,一经查实,立即删除!

相关文章

机器学习——回归与聚类算法

线性回归 广义的线性模型 不仅是自变量是一次方的是线性模型&#xff0c;参数是一次方的也是线性模型&#xff0c;比如&#xff1a; 总结&#xff1a;线性关系的一定是线性模型&#xff0c;线性模型的不一定是线性关系。 损失函数 优化损失 求解模型中的w&#xff0c;使得…

SeNet论文解读/总结

此文章为深度学习在计算机视觉领域的图片分类经典论文SeNet&#xff08;Squeeze-and-Excitation Networks&#xff09;论文总结。 此系列文章是非常适合深度学习领域的小白观看的图像分类经典论文。系列文章如下&#xff1a; AlexNet&#xff1a;AlexNet论文解读/总结_alexnet…

uniapp-搜索配置

自定义搜索组件 1.定义组件的 UI 结构: <template><!-- 通过属性绑定的形式&#xff0c;为 .my-search-container 盒子和 .my-search-box 盒子动态绑定 style 属性 --><view class"my-search-container" :style"{background-color: bgcolor}&q…

《花雕学AI》23:中文调教ChatGPT的秘诀:体验测试与通用案例,解锁无限有趣玩法!

引言&#xff1a; 你有没有想过和一台智能机器人聊天&#xff1f;你有没有想过让一台智能机器人为你创作诗歌、故事或歌曲&#xff1f;你有没有想过让一台智能机器人陪你玩游戏、学习或社交&#xff1f;如果你的答案是肯定的&#xff0c;那么你一定会对ChatGPT感兴趣。 ChatG…

Hystrix详解

前言 Hystrix基于Feign&#xff0c;想熟悉Hystrix&#xff0c;必须先熟悉Feign。 Feign&#xff08;简介和使用&#xff09;&#xff1a; Feign&#xff08;简介和使用&#xff09;_长头发的程序猿的博客-CSDN博客 Hystrix简介 hystrix对应的中文名字是“豪猪”&#xff0c…

Android开发 Camera2获取输出SurfaceTexture

目录 一、Camera2概述 1 Pipeline 2 CameraManager 3 CameraDevice 4 CameraCharacteristics 5 CameraCaptureSession 6 CaptureRequest 7 Surface 8 CaptureResult 三、Camera2的特性 1 Camera2 才支持的高级特性 2 Camera1 迁移到 Camera2 二、示例源码 一、Came…

Honggfuzz Linux arch_clone 源码阅读 (setjmp, clone)

Honggfuzz Linux arch_clone 源码阅读 &#xff08;setjmp, clone&#xff09; 阅读 Honggfuzz 系统架构相关源码&#xff0c;在创建子进程部分遇到了几个问题&#xff0c;经过研究得以解决&#xff0c;在此记录。 Source Code 代码节选自linux/arch.c&#xff0c;已添加注释&…

RabbitMq 消息可靠性问题(一) --- publisher发送时丢失

前言 消息从生产者发送到exchange, 再到 queue, 再到消费者。这个过程中有哪些有消息丢失的可能性呢&#xff1f; 发送时丢失&#xff1a; 生产者发送的消息未送达 exchange消息到达 exchange 后未到达 queue MQ 宕机&#xff0c;queue将消息丢失consumer 接收到消息后未消费…

聊聊如何运用JAVA注解处理器(APT)

什么是APT APT&#xff08;Annotation Processing Tool&#xff09;它是Java编译期注解处理器&#xff0c;它可以让开发人员在编译期对注解进行处理&#xff0c;通过APT可以获取到注解和被注解对象的相关信息&#xff0c;并根据这些信息在编译期按我们的需求生成java代码模板或…

基于DistFlow的含分布式电源配电网优化模型【IEEE39节点】(Python代码实现)

&#x1f4a5;&#x1f4a5;&#x1f49e;&#x1f49e;欢迎来到本博客❤️❤️&#x1f4a5;&#x1f4a5; &#x1f3c6;博主优势&#xff1a;&#x1f31e;&#x1f31e;&#x1f31e;博客内容尽量做到思维缜密&#xff0c;逻辑清晰&#xff0c;为了方便读者。 ⛳️座右铭&a…

SpringBoot【基础篇】---- SSMP整合综合案例

SpringBoot【基础篇】---- SSMP整合综合案例1. 模块创建2. 实体类开发3. 数据层开发----基于CRUD查看MP运行日志查看 MP 的运行日志4. 数据层开发----分页功能制作5. 数据层开发----条件查询功能制作6. 业务层开发业务层快速开发7. 表现层开发8. 表现层消息一致性处理9. 前后端…

STC32G单片机内置ADC及应用编程

一 STC32G单片机内置ADC模块简介 STC32G单片机内部集成了一个12位高速ADC转换器&#xff0c;ADC的最高时钟频率为系统频率的1/2。其输入通道多达15个&#xff08;第15通道为专门测量内部1.19V参考信号源的通道&#xff09;&#xff0c;可分时切换使用。 STC15系列单片机内置AD…

AES加密

来源&#xff1a;链接: b站up主可厉害的土豆 &#xff08;据评论区说图片中有计算错误&#xff0c;但是过程是对的。只是了解过程问题不大&#xff0c;专门研究这一块的话自己可以看视频算一下&#xff09; 准备 首先&#xff0c;明文是固定长度 16字节 128位。 密钥长度可以…

C++语法(18)---- set和map

C语法&#xff08;17&#xff09;---- 二叉搜索树_哈里沃克的博客-CSDN博客https://blog.csdn.net/m0_63488627/article/details/130174864 目录 1.set的介绍 1.set使用 1.基本结构 2.insert 3.erase 4.find 5.count 2.multiset 1.count 2.find 2.map的介绍 1.map …

zookeeper + kafka集群搭建详解

目录 1.消息队列介绍 1.为什么需要消息队列 &#xff08;MO&#xff09; 2.使用消息队列的好处 3.消息队列的两种模式 2.Kafka相关介绍 1.Kafka定义 2.Kafka简介 3. Kafka的特性 3.Kafka系统架构 1. Broker&#xff08;服务器&#xff09; 2. Topic&#xff08;一个队…

GaussDB数据库存储过程介绍

文章目录一、前言二、GaussDB中的定义三、存储过程的使用场景四、存储过程的使用优缺点五、存储过程的示例及示例解析1、GaussDB存储过程语法格式2、GaussDB存储过程语法示例3、存储过程的调用方法七、总结一、前言 华为云数据库GaussDB是一款高性能、高安全性的云原生数据库&…

链表基础知识

1.链表必知必会 什么是链表? 链表是一种通过指针串联在一起的线性结构&#xff0c;每一个节点由两部分组成&#xff0c;一个是数据域一个是指针域&#xff08;存放指向下一个节点的指针&#xff09;&#xff0c;最后一个节点的指针域指向null&#xff08;空指针的意思&#…

23北京邮电大学备考经验

目录【写在前面】本科成绩择校历程英语复习数学复习政治复习专业课复习其它建议笔记复盘压力处理恋爱关系【写在最后】【写在前面】 初试成绩&#xff1a; 本科成绩 总体&#xff1a;浙江某双非学校的软件工程专业、综合测评成绩班级前两名、浙江省省级优秀毕业生、发表过论…

【Node】Node.js 资源汇总推荐

【导读】&#xff1a;Node.js 是一个开源、跨平台的&#xff0c;用于编写服务器和命令行的 JavaScript 运行时工具。awesome-nodejs 是sindresorhus发起维护的 Node.js 资源列表&#xff0c;内容包括&#xff1a;命令行工具、日志、调试、HTTP、构建工具、文件系统、模板、Web …

Elasticjob(2.1.4) failover 、misfire及执行线程池分析

Failover 当设置failover为true时候&#xff0c;elasticjob 集群通过zookeeper 的event watcher 监听是否有instance 丢失&#xff0c;然后对丢失instance 对应的分片进行立即执行。重复一下&#xff0c;failover是立即执行&#xff0c;不是按crontab时间来触发&#xff0c;这…