目录
二叉搜索树
二叉搜索树的一些操作函数
二叉搜索树的查找操作Find
递归实现
迭代实现
查找最大和最小元素
查找最小元素的递归函数
查找最大元素的迭代函数
二叉搜索树
二叉搜索树(BST,Binary Search Tree),也称二叉排序树或二叉查找树。
一颗二叉树,可以为空;如果不为空,满足一下性质:
1.非空左子树的所有键值小于其根节点的键值。
2.非空右子树的所有键值大于其根节点的键值。
3.左、右子树都是二叉搜索树。
二叉搜索树的一些操作函数
- Position Find (ElementType x,BinTree BST);
从二叉搜索树BST中查找元素x,返回其所在节点的地址。
- Position FindMin(BinTree BST);
从二叉搜索树BST中查找并返回最小元素所在节点的地址。
- Position FindMax(BinTree BST);
从二叉搜索树BST中查找并返回最大元素所在节点的地址。
- BinTree Insert(ElementType x,BinTree BST);
在二叉搜索树BST中插入一个值为x的节点。
- BinTree Delete(ElementType x,BinTree BST);
在二叉搜索树BST中删除值为x的节点。
二叉搜索树的查找操作Find
二叉搜索树的查找思路很简单:
查找从根节点开始,如果树为空,返回NULL;
若搜索树非空,则根节点关键字和x进行比较,并进行不同处理:
- 若x小于根节点键值,只需在左子树中继续搜索;
- 若x大于根节点键值,则在右子树中进行继续搜索;
- 如果两者比较的结果是相等,搜索完成,返回指向此节点的指针。
递归实现
使用递归的方法实现的话,代码很简单,直接判断键值大小,进行尾递归。(即在程序要返回值时进行递归)
Position Find(ElementType x,BinTree BST)
{
if (!BST)
{
return NULL; //为空则查找失败
}
if (x > BST->data)
{
return Find(x, BST->Right); //在右子树中继续查找
}
else if (x < BST->data)
{
return Find(x, BST->Left); //在左子树中继续查找
}
else //x == BST->data
{
return BST; //查找成功,返回结点地址
}
}
但递归实现的方法效率不是很高,从编译的角度来看,尾递归可以用循环的方式来实现了。
所以我们将递归函数改为迭代函数
迭代实现
与递归函数同样的一步是,先判断节点是否为空,为空表示查找失败,非空则开始查找;
如果x的值大于根节点,就将节点的指针指向右子树继续循环查找;
如果x的值小于根节点,则将节点的指针指向左子树继续循环查找;
如果相等,则说明查找成功了。
Position IterFind(ElementType x, BinTree BST)
{
while (BST)
{
if (x > BST->data)
{
BST = BST->Right; //向右子树中移动,继续查找
}
else if (x < BST->data)
{
BST = BST->Left; //向左子树中移动,继续查找
}
else
{
return BST; //查找成功,返回结点地址
}
}
return NULL; //查找失败
}
但是这个查找的效率决定于树的高度。
如果二叉搜索树排成了一条链,即斜二叉树,他的这颗树的高度就为n-1,这样最坏的情况下要找到一个节点就需要n-1次了。算法的时间效率就只有O(N)了,而达不到我们想要的log2n,要解决这个问题就要涉及到以后要讲的平衡二叉树了。
查找最大和最小元素
因为二叉搜索树的特殊性,比根节点小的在左子树,比根节点大的在右子树。
所以,
最大元素一定是在树的最右分枝的端节点上; 最小元素一定是在树的最左分枝的端节点上。
函数的代码实现也没什么难点,按照思路,在递归的方法实现中(查找最小元素):节点的左子树不为空就进行递归,直到某一个节点的左子树为空就返回。
查找最小元素的递归函数
Position FindMin(BinTree BST)
{
if (!BST)
{
return NULL; //空的二叉搜索树,返回NULL
}
else if (!BST->Left)
{
return BST; //找到最左的叶节点并返回
}
else
{
return FindMin(BST->Left); //沿左分支继续查找
}
}
在迭代的方法实现中:直接走到最左端或者最右端的节点即是最小元素或者最大元素。
查找最大元素的迭代函数
Position FindMax(BinTree BST)
{
if (BST)
{
while (BST->Right)
{
BST = BST->Right; //沿右分支一直查找,直到最右叶节点
}
}
return BST;
}
end
学习自:MOOC数据结构——陈越、何钦铭