ONNX模型部署环境创建
- 1. onnxruntime 安装
- 2. onnxruntime-gpu 安装
- 2.1 方法一:onnxruntime-gpu依赖于本地主机上cuda和cudnn
- 2.2 方法二:onnxruntime-gpu不依赖于本地主机上cuda和cudnn
- 2.2.1 举例:创建onnxruntime-gpu==1.14.1的conda环境
- 2.2.2 举例:实例测试
1. onnxruntime 安装
onnx 模型在 CPU 上进行推理,在conda环境中直接使用pip安装即可
pip install onnxruntime
2. onnxruntime-gpu 安装
想要 onnx 模型在 GPU 上加速推理,需要安装 onnxruntime-gpu 。有两种思路:
- 依赖于 本地主机 上已安装的 cuda 和 cudnn 版本
- 不依赖于 本地主机 上已安装的 cuda 和 cudnn 版本
要注意:onnxruntime-gpu, cuda, cudnn三者的版本要对应,否则会报错 或 不能使用GPU推理。
onnxruntime-gpu, cuda, cudnn版本对应关系详见: 官网
2.1 方法一:onnxruntime-gpu依赖于本地主机上cuda和cudnn
-
查看已安装 cuda 和 cudnn 版本
# cuda version cat /usr/local/cuda/version.txt # cudnn version cat /usr/local/cuda/include/cudnn.h | grep CUDNN_MAJOR -A 2
-
根据 onnxruntime-gpu, cuda, cudnn 三者对应关系,安装相应的 onnxruntime-gpu 即可。
## cuda==10.2 ## cudnn==8.0.3 ## onnxruntime-gpu==1.5.0 or 1.6.0 pip install onnxruntime-gpu==1.6.0
2.2 方法二:onnxruntime-gpu不依赖于本地主机上cuda和cudnn
在 conda 环境中安装,不依赖于 本地主机 上已安装的 cuda 和 cudnn 版本,灵活方便。这里,先说一下已经测试通过的组合:
- python3.6, cudatoolkit10.2.89, cudnn7.6.5, onnxruntime-gpu1.4.0
- python3.8, cudatoolkit11.3.1, cudnn8.2.1, onnxruntime-gpu1.14.1
如果需要其他的版本, 可以根据 onnxruntime-gpu, cuda, cudnn 三者对应关系自行组合测试。
下面,从创建conda环境,到实现在GPU上加速onnx模型推理进行举例。
2.2.1 举例:创建onnxruntime-gpu==1.14.1的conda环境
## 创建conda环境
conda create -n torch python=3.8
## 激活conda环境
source activate torch
conda install pytorch==1.10.0 torchvision==0.11.0 torchaudio==0.10.0 cudatoolkit=11.3 -c pytorch -c conda-forge
conda install cudnn==8.2.1
pip install onnxruntime-gpu==1.14.1
## pip install ... (根据需求,安装其他的包)
2.2.2 举例:实例测试
-
打开终端,输入 watch -n 0.1 nvidia-smi, 实时查看gpu使用情况
-
代码测试,摘取API
import numpy as np import torch import onnxruntime MODEL_FILE = '.model.onnx' DEVICE_NAME = 'cuda' if torch.cuda.is_available() else 'cpu' DEVICE_INDEX = 0 DEVICE=f'{DEVICE_NAME}:{DEVICE_INDEX}' # A simple model to calculate addition of two tensors def model(): class Model(torch.nn.Module): def __init__(self): super(Model, self).__init__() def forward(self, x, y): return x.add(y) return Model() # Create an instance of the model and export it to ONNX graph format def create_model(type: torch.dtype = torch.float32): sample_x = torch.ones(3, dtype=type) sample_y = torch.zeros(3, dtype=type) torch.onnx.export(model(), (sample_x, sample_y), MODEL_FILE, input_names=["x", "y"], output_names=["z"], dynamic_axes={"x":{0 : "array_length_x"}, "y":{0: "array_length_y"}}) # Create an ONNX Runtime session with the provided model def create_session(model: str) -> onnxruntime.InferenceSession: providers = ['CPUExecutionProvider'] if torch.cuda.is_available(): providers.insert(0, 'CUDAExecutionProvider') return onnxruntime.InferenceSession(model, providers=providers) # Run the model on CPU consuming and producing numpy arrays def run(x: np.array, y: np.array) -> np.array: session = create_session(MODEL_FILE) z = session.run(["z"], {"x": x, "y": y}) return z[0] def main(): create_model() print(run(x=np.float32([1.0, 2.0, 3.0]),y=np.float32([4.0, 5.0, 6.0]))) if __name__ == "__main__": main()