【Pytorch】利用PyTorch实现图像识别

news2025/1/10 23:48:11

在这里插入图片描述
本文参加新星计划人工智能(Pytorch)赛道:https://bbs.csdn.net/topics/613989052


这是目录

  • 使用torchvision库的datasets类加载常用的数据集或自定义数据集
  • 使用torchvision库进行数据增强和变换,自定义自己的图像分类数据集并使用torchvision库加载它们
  • 使用torchvision库的models类加载预训练模型或自定义模型
  • forward方法
  • 进行模型训练和测试,使用matplotlib.pyplot库可视化结果


使用torchvision库的datasets类加载常用的数据集或自定义数据集

图像识别是计算机视觉中的一个基础任务,它的目标是让计算机能够识别图像中的物体、场景或者概念,并将它们分配到预定义的类别中。例如,给定一张猫的图片,图像识别系统应该能够输出“猫”这个类别。

为了训练和评估图像识别系统,我们需要有大量的带有标注的图像数据集。常用的图像分类数据集有:

  • ImageNet:一个包含超过1400万张图片和2万多个类别的大型数据库,是目前最流行和最具挑战性的图像分类基准之一。
  • CIFAR-10/CIFAR-100:一个包含6万张32×32大小的彩色图片和10或100个类别的小型数据库,适合入门级和快速实验。
  • MNIST:一个包含7万张28×28大小的灰度手写数字图片和10个类别的经典数据库,是深度学习中最常用的测试集之一。
  • Fashion-MNIST:一个包含7万张28×28大小的灰度服装图片和10个类别的数据库,是MNIST数据库在时尚领域上更加复杂和现代化版本。

使用torchvision库可以方便地加载这些常用数据集或者自定义数据集。torchvision.datasets提供了一些加载数据集或者下载数据集到本地缓存文件夹(默认为./data)并返回Dataset对象(torch.utils.data.Dataset) 的函数。Dataset对象可以存储样本及其对应标签,并提供索引方式(dataset[i])来获取第i个样本。例如,要加载CIFAR-10训练集并进行随机打乱,可以使用以下代码:

import torchvision
import torchvision.transforms as transforms

transform = transforms.Compose([transforms.ToTensor()]) # 定义转换函数,将PIL.Image转换为torch.Tensor
trainset = torchvision.datasets.CIFAR10(root='./data', train=True, download=True, transform=transform) # 加载CIFAR-10训练集
trainloader = torch.utils.data.DataLoader(trainset, batch_size=4, shuffle=True) # 定义DataLoader对象,用于批量加载数据

使用torchvision库进行数据增强和变换,自定义自己的图像分类数据集并使用torchvision库加载它们

  • 数据增强和变换:为了提高模型的泛化能力和数据利用率,我们通常会对图像数据进行一些随机的变换,例如裁剪、旋转、翻转、缩放、亮度调整等。这些变换可以在一定程度上模拟真实场景中的图像变化,增加模型对不同视角和光照条件下的物体识别能力。torchvision.transforms提供了一些常用的图像变换函数,可以组合成一个transform对象,并传入datasets类中作为参数。例如,要对CIFAR-10训练集进行随机水平翻转和随机裁剪,并将图像归一化到[-1, 1]范围内,可以使用以下代码:
import torchvision
import torchvision.transforms as transforms

transform = transforms.Compose([
    transforms.RandomHorizontalFlip(), # 随机水平翻转
    transforms.RandomCrop(32, padding=4), # 随机裁剪到32×32大小,并在边缘填充4个像素
    transforms.ToTensor(), # 将PIL.Image转换为torch.Tensor
    transforms.Normalize((0.5, 0.5, 0.5), (0.5, 0.5, 0.5)) # 将RGB三个通道的值归一化到[-1, 1]范围内
])
trainset = torchvision.datasets.CIFAR10(root='./data', train=True, download=True, transform=transform) # 加载CIFAR-10训练集,并应用上述变换
trainloader = torch.utils.data.DataLoader(trainset, batch_size=4, shuffle=True) # 定义DataLoader对象,用于批量加载数据
  • 自定义图像分类数据集:如果我们有自己的图像分类数据集,我们可以通过继承torch.utils.data.Dataset类来自定义一个Dataset对象,并实现__len__和__getitem__两个方法。__len__方法返回数据集中样本的数量,__getitem__方法根据给定的索引返回一个样本及其标签。例如,假设我们有一个文件夹结构如下:
my_dataset/
├── class_0/
│   ├── image_000.jpg
│   ├── image_001.jpg
│   └── ...
├── class_1/
│   ├── image_000.jpg
│   ├── image_001.jpg
│   └── ...
└── ...

其中每个子文件夹代表一个类别,每个子文件夹中包含该类别对应的图像文件。我们可以使用以下代码来自定义一个Dataset对象,并加载这个数据集:

import torch.utils.data as data
from PIL import Image
import os

class MyDataset(data.Dataset):
    def __init__(self, root_dir, transform=None):
        self.root_dir = root_dir # 根目录路径
        self.transform = transform # 变换函数
        
        self.classes = sorted(os.listdir(root_dir)) # 类别列表(按字母顺序排序)
        self.class_to_idx = {c: i for i,c in enumerate(self.classes)} # 类别名到索引的映射
        
        self.images = [] # 图片路径列表(相对于根目录)
        self.labels = [] # 标签列表(整数)
        
        for c in self.classes:
            c_dir = os.path.join(root_dir, c) # 类别子目录路径
            for img_name in sorted(os.listdir(c_dir)): # 遍历每个图片文件名(按字母顺序排序)
                img_path = os.path.join(c,img_name) # 图片相对路径(相对于根目录)
                label = self.class_to_idx[c] # 图

使用torchvision库的models类加载预训练模型或自定义模型

  • 加载预训练模型或自定义模型:torchvision.models提供了一些常用的图像分类模型,例如AlexNet、VGG、ResNet等,并且可以选择是否加载在ImageNet数据集上预训练好的权重。这些模型可以直接用于图像分类任务,也可以作为特征提取器或者微调(fine-tune)的基础。例如,要加载一个预训练好的ResNet-18模型,并冻结除最后一层外的所有参数,可以使用以下代码:
import torchvision.models as models

model = models.resnet18(pretrained=True) # 加载预训练好的ResNet-18模型
for param in model.parameters(): # 遍历所有参数
    param.requires_grad = False # 将参数的梯度设置为False,表示不需要更新
num_features = model.fc.in_features # 获取全连接层(fc)的输入特征数
model.fc = torch.nn.Linear(num_features, 10) # 替换全连接层为一个新的线性层,输出特征数为10(假设有10个类别)

如果我们想要自定义自己的图像分类模型,我们可以通过继承torch.nn.Module类来实现一个Module对象,并实现__init__和forward两个方法。__init__方法用于定义模型中需要的各种层和参数,forward方法用于定义前向传播过程。例如,要自定义一个简单的卷积神经网络(CNN)模型,可以使用以下代码:

import torch.nn as nn

class MyCNN(nn.Module):
    def __init__(self):
        super(MyCNN, self).__init__() # 调用父类构造函数
        self.conv1 = nn.Conv2d(3, 6, 5) # 定义第一个卷积层,输入通道数为3(RGB),输出通道数为6,卷积核大小为5×5
        self.pool = nn.MaxPool2d(2, 2) # 定义最大池化层,池化核大小为2×2,步长为2
        self.conv2 = nn.Conv2d(6, 16, 5) # 定义第二个卷积层,输入通道数为6,输出通道数为16,卷积核大小为5×5
        self.fc1 = nn.Linear(16 * 5 * 5, 120) # 定义第一个全连接层,输入特征数为16×5×5(根据卷积和池化后的图像大小计算得到),输出特征数为120
        self.fc2 = nn.Linear(120, 84) # 定义第二个全连接层,输入特征数为120,输出特征数为84
        self.fc3 = nn.Linear(84, 10) # 定义第三个全连接层,输入特征数为84,

forward方法

forward方法用于定义前向传播过程,即如何根据输入的图像张量(Tensor)计算出输出的类别概率分布。我们可以使用定义好的各种层和参数,并结合一些激活函数(如ReLU)和归一化函数(如softmax)来实现forward方法。例如,要实现上面自定义的CNN模型的forward方法,可以使用以下代码:

import torch.nn.functional as F

class MyCNN(nn.Module):
    def __init__(self):
        # 省略__init__方法的内容
        ...

    def forward(self, x): # 定义前向传播过程,x是输入的图像张量
        x = self.pool(F.relu(self.conv1(x))) # 将x通过第一个卷积层和ReLU激活函数,然后通过最大池化层
        x = self.pool(F.relu(self.conv2(x))) # 将x通过第二个卷积层和ReLU激活函数,然后通过最大池化层
        x = x.view(-1, 16 * 5 * 5) # 将x展平为一维向量,-1表示自动推断批量大小
        x = F.relu(self.fc1(x)) # 将x通过第一个全连接层和ReLU激活函数
        x = F.relu(self.fc2(x)) # 将x通过第二个全连接层和ReLU激活函数
        x = self.fc3(x) # 将x通过第三个全连接层
        x = F.softmax(x, dim=1) # 将x通过softmax函数,沿着第一个维度(类别维度)进行归一化,得到类别概率分布
        return x # 返回输出的类别概率分布

进行模型训练和测试,使用matplotlib.pyplot库可视化结果

模型训练和测试是机器学习中的重要步骤,它们可以帮助我们评估模型的性能和泛化能力。matplotlib.pyplot是一个Python库,它可以用来绘制各种类型的图形,包括曲线图、散点图、直方图等。使用matplotlib.pyplot库可视化结果的一般步骤如下:

  • 导入matplotlib.pyplot模块,并设置一些参数,如字体、分辨率等。
  • 创建一个或多个图形对象(figure),并指定大小、标题等属性。
  • 在每个图形对象中创建一个或多个子图(subplot),并指定位置、坐标轴等属性。
  • 在每个子图中绘制数据,使用不同的函数和参数,如plot、scatter、bar等。
  • 添加一些修饰元素,如图例(legend)、标签(label)、标题(title)等。
  • 保存或显示图形。

例如:使用matplotlib.pyplot库绘制了一个线性回归模型的训练误差和测试误差曲线:

# 导入模块
import matplotlib.pyplot as plt
import numpy as np

# 设置字体和分辨率
plt.rcParams["font.sans-serif"] = ["SimHei"]
plt.rcParams["axes.unicode_minus"] = False
%config InlineBackend.figure_format = "retina"

# 生成数据
x = np.linspace(0, 10, 100)
y = 3 * x + 5 + np.random.randn(100) * 2 # 真实值
w = np.random.randn() # 随机初始化权重
b = np.random.randn() # 随机初始化偏置

# 定义损失函数
def loss(y_true, y_pred):
    return ((y_true - y_pred) ** 2).mean()

# 定义梯度下降函数
def gradient_descent(x, y_true, w, b, lr):
    y_pred = w * x + b # 预测值
    dw = -2 * (x * (y_true - y_pred)).mean() # 权重梯度
    db = -2 * (y_true - y_pred).mean() # 偏置梯度
    w = w - lr * dw # 更新权重
    b = b - lr * db # 更新偏置
    return w, b

# 训练模型,并记录每轮的训练误差和测试误差
epochs = 20 # 训练轮数
lr = 0.01 # 学习率
train_loss_list = [] # 训练误差列表
test_loss_list = [] # 测试误差列表

for epoch in range(epochs):
    # 划分训练集和测试集(8:2)
    train_index = np.random.choice(100, size=80, replace=False)
    test_index = np.setdiff1d(np.arange(100), train_index)
    x_train, y_train = x[train_index], y[train_index]
    x_test, y_test = x[test_index], y[test_index]

    # 梯度下降更新参数,并计算训练误差和测试误差
    w, b = gradient_descent(x_train, y_train, w, b, lr)
    train_loss = loss(y_train, w * x_train + b)
    test_loss = loss(y_test, w * x_test + b)

    # 打印结果,并将误差添加到列表中
    print(f"Epoch {epoch+1}, Train Loss: {train_loss:.4f}, Test Loss: {test_loss:.4f}")
    train_loss_list.append(train_loss)
    test_loss_list.append(test_loss)

# 创建一个图形对象,并设置大小为8*6英寸    
plt.figure(figsize=(8,6))

# 在图形对象中创建一个子图,并设置位置为1行1列的第1个
plt.subplot(1, 1, 1)

# 在子图中绘制训练误差和测试误差曲线,使用不同的颜色和标签
plt.plot(np.arange(epochs), train_loss_list, "r", label="Train Loss")
plt.plot(np.arange(epochs), test_loss_list, "b", label="Test Loss")

# 添加图例、坐标轴标签和标题
plt.legend()
plt.xlabel("Epoch")
plt.ylabel("Loss")
plt.title("Linear Regression Loss Curve")

# 保存或显示图形
#plt.savefig("loss_curve.png")
plt.show()

运行后,可以看到如下的图形:
在这里插入图片描述
在这里插入图片描述

参考:: PyTorch官方网站

在这里插入图片描述

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.coloradmin.cn/o/421316.html

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈,一经查实,立即删除!

相关文章

安卓渐变的背景框实现

安卓渐变的背景框实现1.背景实现方法1.利用PorterDuffXfermode进行图层的混合,这是最推荐的方法,也是最有效的。2.利用canvas裁剪实现,这个方法有个缺陷,就是圆角会出现毛边,也就是锯齿。3.利用layer绘制边框1.背景 万…

Python 爬虫进阶必备 | 某电影站视频采集加密参数逻辑分析

点击上方“咸鱼学Python”,选择“加为星标”第一时间关注Python技术干货!今日网站aHR0cHM6Ly96MS5tMTkwNy5jbi8/ang9JUU1JTkzJTg4JUU1JTg4JUE5JUMyJUI3JUU2JUIzJUEyJUU3JTg5JUI5JUU0JUI4JThFJUU1JUFGJTg2JUU1JUFFJUE0加密定位与分析分析的网站是一个电影…

强化学习分类与汇总介绍

1.强化学习(Reinforcement Learning, RL) 强化学习把学习看作试探评价过程,Agent选择一个动作用于环境,环境接受该动作后状态发生变化,同时产生一个强化信号(奖或惩)反馈给Agent,Agent根据强化信号和环境当…

记一次 .NET 某医疗住院系统 崩溃分析

一:背景 1. 讲故事 最近收到了两起程序崩溃的dump,查了下都是经典的 double free 造成的,蛮有意思,这里就抽一篇出来分享一下经验供后面的学习者避坑吧。 二:WinDbg 分析 1. 崩溃点在哪里 windbg 带了一个自动化分…

Ubuntu上搭建网站【建立数据隧道,降低开支】

上篇:Ubuntu搭建web站点并发布公网访问 目录 1.安装WordPress 2.创建WordPress数据库 3.安装相对URL插件 4.内网穿透将网站发布上线 1.命令行方式: 2.图形化操作方式 5.图书推荐 cpolar官网 1.安装WordPress 在前面的介绍中,我们为大…

Spring Cloud Alibaba全家桶(八)——Sentinel规则持久化

前言 本文小新为大家带来 Sentinel规则持久化 相关知识,具体内容包括,Sentinel规则推送三种模式介绍,包括:原始模式,拉模式,推模式,并对基于Nacos配置中心控制台实现推送进行详尽介绍~ 不积跬步…

【K8S系列】Pod详解

目录 序言 1 前言 2 为什么需要pod 3 什么是Pod? 3.1 Pod的组成 3.2 Pod的用途 3.3 Pod的生命周期 3.4 Pod的特点 4 Pod的使用 5 结论 序言 任何一件事情,只要坚持六个月以上,你都可以看到质的飞跃。 今天学习一下K8s-Pod相关内容&…

SQL Server的页面(pages )和盘区(extents)体系结构

pages 和 extents 体系结构一、背景二、页面和盘区2.1、页面2.2、大行支持2.3、行溢出注意事项2.4、盘区(extents)三、管理扩展数据块分配和可用空间3.1、管理扩展数据块分配3.2、跟踪可用空间四、管理对象使用的空间五、追踪修改后的盘区总结一、背景 …

Spring Cloud Alibaba全家桶(九)——分布式事务组件Seata

前言 本文小新为大家带来 分布式事务组件Seata 相关知识,具体内容包括分布式事务简介(包括:事务简介,本地事务,分布式事务典型场景,分布式事务理论基础,分布式事务解决方案)&#xf…

PyTorch 之 基于经典网络架构训练图像分类模型

文章目录一、 模块简单介绍1. 数据预处理部分2. 网络模块设置3. 网络模型保存与测试二、数据读取与预处理操作1. 制作数据源2. 读取标签对应的实际名字3. 展示数据三、模型构建与实现1. 加载 models 中提供的模型,并且直接用训练的好权重当做初始化参数2. 参考 pyto…

可视化CNN和特征图

卷积神经网络(cnn)是一种神经网络,通常用于图像分类、目标检测和其他计算机视觉任务。CNN的关键组件之一是特征图,它是通过对图像应用卷积滤波器生成的输入图像的表示。 理解卷积层 1、卷积操作 卷积的概念是CNN操作的核心。卷积是一种数学运算&#x…

当深度学习遇上Web开发:Spring和OpenAI如何实现图片生成?

文章目录一、简介1. 什么是Spring和OpenAI2. 生成图像的意义和应用场景二、相关技术介绍1. 深度学习模型2. GAN模型3. TensorFlow框架四、简单的Spring应用1. 搭建Spring项目2. 添加相关依赖3. 编写简单的控制器五、OpenAI API1. 介绍OpenAI API2. 搭建OpenAI API环境3. 配置AP…

Pytorch实现GCN(基于Message Passing消息传递机制实现)

文章目录前言一、导入相关库二、加载Cora数据集三、定义GCN网络3.1 定义GCN层3.1.1 消息传递阶段(message)3.1.2 消息聚合阶段(aggregate)3.1.3 节点更新阶段(update)3.1.4 定义传播过程(propag…

AI时代来临,如何把握住文档处理及数据分析的机遇

AI时代来临,如何把握住文档处理及数据分析的机遇前言一、生成式人工智能与元宇宙二、面向图像文档的复杂结构建模研究三、大型语言模型的关键技术和实现ChatGPT 介绍ChatGPT的三个关键技术四、ChatGPT与文档处理未来总结前言 在3月18日,由中国图象图形协…

【CVPR 2023】FasterNet论文详解

论文名称:Run, Don’t Walk: Chasing Higher FLOPS for Faster Neural Networks 论文地址:https://arxiv.org/abs/2303.03667 作者发现由于效率低下的每秒浮点运算,每秒浮点运算的减少并不一定会导致类似水平的延迟减少。提出通过同时减少冗…

YOLOv2论文解读/总结

本章论文: YOLOv2论文(YOLO9000: Better, Faster, Stronger)(原文+解读/总结+翻译) 系列论文: YOLOv1论文解读/总结_yolo论文原文_耿鬼喝椰汁的博客-CSDN博客 前言 在YOLOv1推出一…

k8s 部署nginx 实现集群统一配置,自动更新nginx.conf配置文件 总结

k8s 部署nginx 实现集群统一配置,自动更新nginx.conf配置文件 总结 大纲 1 nginx镜像选择2 创建configmap保存nginx配置文件3 使用inotify监控配置文件变化4 Dockerfile创建5 调整镜像原地址使用阿里云6 创建deploy部署文件部署nginx7 测试使用nginx配置文件同步&…

ETL 与 ELT的关键区别

ETL 和 ELT 之间的主要区别在于数据转换发生的时间和地点 — 这些变化可能看起来很小,但会产生很大的影响! ETL 和 ELT 是数据团队引入、转换并最终向利益干系人公开数据的两种主要方式。它们是与现代云数据仓库和 ETL 工具的开发并行发展的流程。 在任…

来自清华的AdaSP:基于自适应稀疏成对损失的目标重识别

文章目录摘要1、简介2、相关工作3、方法3.1、稀疏成对损失3.2、最小难度的正样本挖掘4、实验4.1、与其他成对损失的比较4.2、消融研究5、结论摘要 论文链接:https://arxiv.org/abs/2303.18247 物体重识别(ReID)旨在从大型图库中找到与给定探针具有相同身份的实例。…

【分布式版本控制系统Git】| 国内代码托管中心-Gitee、自建代码托管平台-GitLab

目录 一:国内代码托管中心-码云 1. 码云创建远程库 2. IDEA 集成码云 3. 码云复制 GitHub 项目 二:自建代码托管平台-GitLab 1. GitLab 安装 2. IDEA 集成 GitLab 一:国内代码托管中心-码云 众所周知,GitHub 服务器在国外&…