PyTorch 之 基于经典网络架构训练图像分类模型

news2025/1/10 23:34:42

文章目录

  • 一、 模块简单介绍
    • 1. 数据预处理部分
    • 2. 网络模块设置
    • 3. 网络模型保存与测试
  • 二、数据读取与预处理操作
    • 1. 制作数据源
    • 2. 读取标签对应的实际名字
    • 3. 展示数据
  • 三、模型构建与实现
    • 1. 加载 models 中提供的模型,并且直接用训练的好权重当做初始化参数
    • 2. 参考 pytorch 官网例子
    • 3. 设置哪些层需要训练
    • 4. 优化器设置
    • 5. 训练模块
    • 6. 测试模型效果

本文参加新星计划人工智能(Pytorch)赛道:https://bbs.csdn.net/topics/613989052
在这里插入图片描述

一、 模块简单介绍

  • 我们可以进入 pytorch 的官方网站,对模型的基本架构和训练好的参数进行直接调用,具体链接如下 https://pytorch.org/。

1. 数据预处理部分

  • (1) 数据增强通过 torchvision 中 transforms 模块的自带功能实现,比较实用。
  • (2) 数据预处理通过 torchvision 中 transforms 也帮我们实现好了,直接调用即可。
  • (3) DataLoader 模块可以直接读取 batch 数据。

2. 网络模块设置

  • (1) 加载预训练模型,torchvision 中有很多经典网络架构,调用起来十分方便,并且可以用人家训练好的权重参数来继续训练,也就是所谓的迁移学习。
  • (2) 需要注意的是别人训练好的任务跟咱们的可不是完全一样,需要把最后的 head 层改一改,一般也就是最后的全连接层,改成咱们自己的任务。
  • (3) 训练时可以全部重头训练,也可以只训练最后咱们任务的层,因为前几层都是做特征提取的,本质任务目标是一致的。

3. 网络模型保存与测试

  • (1) 模型保存的时候可以带有选择性,例如在验证集中如果当前效果好则保存。
  • (2) 读取模型进行实际测试。

在这里插入图片描述

import os
import matplotlib.pyplot as plt
%matplotlib inline
import numpy as np
import torch
from torch import nn
import torch.optim as optim
import torchvision
#pip install torchvision
from torchvision import transforms, models, datasets
#https://pytorch.org/docs/stable/torchvision/index.html
import imageio
import time
import warnings
import random
import sys
import copy
import json
from PIL import Image

二、数据读取与预处理操作

  • 在最开始,我们先进行训练集和测试集的数据读取。
data_dir = './flower_data/'
train_dir = data_dir + '/train'
valid_dir = data_dir + '/valid'

1. 制作数据源

  • 由于整体数据集较少,因此,我们通过 data_transforms 进行数据增强,指定所有图像预处理操作,包括旋转,裁剪,水平翻转、垂直翻转等等。
  • 需要注意的是,这里分为训练集和数据集两部分。
data_transforms = {
    'train': transforms.Compose([transforms.RandomRotation(45),#随机旋转,-45到45度之间随机选
        transforms.CenterCrop(224),#从中心开始裁剪
        transforms.RandomHorizontalFlip(p=0.5),#随机水平翻转 选择一个概率概率
        transforms.RandomVerticalFlip(p=0.5),#随机垂直翻转
        transforms.ColorJitter(brightness=0.2, contrast=0.1, saturation=0.1, hue=0.1),#参数1为亮度,参数2为对比度,参数3为饱和度,参数4为色相
        transforms.RandomGrayscale(p=0.025),#概率转换成灰度率,3通道就是R=G=B
        transforms.ToTensor(),
        transforms.Normalize([0.485, 0.456, 0.406], [0.229, 0.224, 0.225])#均值,标准差
    ]),
    'valid': transforms.Compose([transforms.Resize(256),
        transforms.CenterCrop(224),
        transforms.ToTensor(),
        transforms.Normalize([0.485, 0.456, 0.406], [0.229, 0.224, 0.225])
    ]),
}
  • 在数据加强完后,我们将单次传递给程序用以训练的数据也就是样本的个数设置为 8。
  • 在传入数据集的时候,第一个参数是我们原始数据的路径,第二个参数是我们的数据增强方法。
batch_size = 8
​
image_datasets = {x: datasets.ImageFolder(os.path.join(data_dir, x), data_transforms[x]) for x in ['train', 'valid']}
dataloaders = {x: torch.utils.data.DataLoader(image_datasets[x], batch_size=batch_size, shuffle=True) for x in ['train', 'valid']}
dataset_sizes = {x: len(image_datasets[x]) for x in ['train', 'valid']}
class_names = image_datasets['train'].classes
  • 接下来,我们读取数据集的基本信息,包括训练集中的数据个数,存储路径等等信息,测试集也是相同的。
image_datasets
#{'train': Dataset ImageFolder
#     Number of datapoints: 6552
#     Root location: ./flower_data/train
#     StandardTransform
# Transform: Compose(
#                RandomRotation(degrees=(-45, 45), resample=False, expand=False)
#                CenterCrop(size=(224, 224))
#                RandomHorizontalFlip(p=0.5)
#                RandomVerticalFlip(p=0.5)
#                ColorJitter(brightness=[0.8, 1.2], contrast=[0.9, 1.1], saturation=[0.9, 1.1], #hue=[-0.1, 0.1])
#                RandomGrayscale(p=0.025)
#                ToTensor()
#                Normalize(mean=[0.485, 0.456, 0.406], std=[0.229, 0.224, 0.225])
#            ), 'valid': Dataset ImageFolder
#     Number of datapoints: 818
#     Root location: ./flower_data/valid
#     StandardTransform
# Transform: Compose(
#                Resize(size=256, interpolation=PIL.Image.BILINEAR)
#                CenterCrop(size=(224, 224))
#                ToTensor()
#                Normalize(mean=[0.485, 0.456, 0.406], std=[0.229, 0.224, 0.225])
#            )}
  • 我们也可以打印 dataloaders 中的信息,包含训练集和测试集两个。
dataloaders
#{'train': <torch.utils.data.dataloader.DataLoader at 0x21c5388b2b0>,
# 'valid': <torch.utils.data.dataloader.DataLoader at 0x21c539a80b8>}
  • 查看 dataset 中的数据数量,其中训练集包含 6552 个样本,测试集中包含 818 个样本。
dataset_sizes
#{'train': 6552, 'valid': 818}

2. 读取标签对应的实际名字

  • 在我们的文件当中,包含一个 json 文件,这中间包含了基本的标签信息,每个数字对应一种花的种类,在此,我们对这些信息进行读取。

在这里插入图片描述

with open('cat_to_name.json', 'r') as f:
    cat_to_name = json.load(f)
cat_to_name

在这里插入图片描述

3. 展示数据

  • 在展示数据时,需要注意 tensor 的数据需要转换成 numpy 的格式,而且还需要还原回标准化的结果。
  • 由于现在的数据都是已经处理完成后的数据,因此,如果我们想要展示的话需要对这些数据进行还原。
def im_convert(tensor):
    """ 展示数据"""
    
    image = tensor.to("cpu").clone().detach()
    image = image.numpy().squeeze()
    image = image.transpose(1,2,0)
    image = image * np.array((0.229, 0.224, 0.225)) + np.array((0.485, 0.456, 0.406))
    image = image.clip(0, 1)return image
  • 在还原完成后,我们只需要对其中的数据进行读取即可,这里展示 8 个数据为例。
fig=plt.figure(figsize=(20, 12))
columns = 4
rows = 2
​
dataiter = iter(dataloaders['valid'])
inputs, classes = dataiter.next()for idx in range (columns*rows):
    ax = fig.add_subplot(rows, columns, idx+1, xticks=[], yticks=[])
    ax.set_title(cat_to_name[str(int(class_names[classes[idx]]))])
    plt.imshow(im_convert(inputs[idx]))
plt.show()

在这里插入图片描述

三、模型构建与实现

1. 加载 models 中提供的模型,并且直接用训练的好权重当做初始化参数

  • 第一次执行需要下载,可能会比较慢,大家不必担心。
model_name = 'resnet'  #可选的比较多 ['resnet', 'alexnet', 'vgg', 'squeezenet', 'densenet', 'inception']
  • 在下载完成后,通过设置 feature_extract 为 True 或 False,决定是否用人家训练好的特征来做,这里直接使用人家训练好的特征,也就是设置为 True。
feature_extract = True 
  • 之后,我们决定是否用 GPU 进行训练。
train_on_gpu = torch.cuda.is_available()if not train_on_gpu:
    print('CUDA is not available.  Training on CPU ...')
else:
    print('CUDA is available!  Training on GPU ...')
    
device = torch.device("cuda:0" if torch.cuda.is_available() else "cpu")
#CUDA is available!  Training on GPU ...
  • 进行模型架构的打印。
def set_parameter_requires_grad(model, feature_extracting):
    if feature_extracting:
        for param in model.parameters():
            param.requires_grad = False
            
model_ft = models.resnet152()
model_ft

在这里插入图片描述

2. 参考 pytorch 官网例子

  • 选择合适的模型,不同模型的初始化方法稍微有点区别,具体的代码如下所示。
def initialize_model(model_name, num_classes, feature_extract, use_pretrained=True):
 
    model_ft = None
    input_size = 0if model_name == "resnet":
        """ Resnet152
        """
        model_ft = models.resnet152(pretrained=use_pretrained)
        set_parameter_requires_grad(model_ft, feature_extract)
        num_ftrs = model_ft.fc.in_features
        model_ft.fc = nn.Sequential(nn.Linear(num_ftrs, 102),
                                   nn.LogSoftmax(dim=1))
        input_size = 224elif model_name == "alexnet":
        """ Alexnet
        """
        model_ft = models.alexnet(pretrained=use_pretrained)
        set_parameter_requires_grad(model_ft, feature_extract)
        num_ftrs = model_ft.classifier[6].in_features
        model_ft.classifier[6] = nn.Linear(num_ftrs,num_classes)
        input_size = 224elif model_name == "vgg":
        """ VGG11_bn
        """
        model_ft = models.vgg16(pretrained=use_pretrained)
        set_parameter_requires_grad(model_ft, feature_extract)
        num_ftrs = model_ft.classifier[6].in_features
        model_ft.classifier[6] = nn.Linear(num_ftrs,num_classes)
        input_size = 224elif model_name == "squeezenet":
        """ Squeezenet
        """
        model_ft = models.squeezenet1_0(pretrained=use_pretrained)
        set_parameter_requires_grad(model_ft, feature_extract)
        model_ft.classifier[1] = nn.Conv2d(512, num_classes, kernel_size=(1,1), stride=(1,1))
        model_ft.num_classes = num_classes
        input_size = 224elif model_name == "densenet":
        """ Densenet
        """
        model_ft = models.densenet121(pretrained=use_pretrained)
        set_parameter_requires_grad(model_ft, feature_extract)
        num_ftrs = model_ft.classifier.in_features
        model_ft.classifier = nn.Linear(num_ftrs, num_classes)
        input_size = 224elif model_name == "inception":
        """ Inception v3
        Be careful, expects (299,299) sized images and has auxiliary output
        """
        model_ft = models.inception_v3(pretrained=use_pretrained)
        set_parameter_requires_grad(model_ft, feature_extract)
        # Handle the auxilary net
        num_ftrs = model_ft.AuxLogits.fc.in_features
        model_ft.AuxLogits.fc = nn.Linear(num_ftrs, num_classes)
        # Handle the primary net
        num_ftrs = model_ft.fc.in_features
        model_ft.fc = nn.Linear(num_ftrs,num_classes)
        input_size = 299else:
        print("Invalid model name, exiting...")
        exit()return model_ft, input_size

3. 设置哪些层需要训练

  • 在关于哪些层需要训练,首先导入模型的名字,把最终的输出结果 102 导入进去,然后选择是否动那些层,是否使用人家的模型参数。
model_ft, input_size = initialize_model(model_name, 102, feature_extract, use_pretrained=True)
  • 使用 GPU 进行计算。
model_ft = model_ft.to(device)
  • 将我们训练完成后的模型保存到指定路径之下。​
filename='checkpoint.pth'
  • 是否训练所有层。
params_to_update = model_ft.parameters()
print("Params to learn:")
if feature_extract:
    params_to_update = []
    for name,param in model_ft.named_parameters():
        if param.requires_grad == True:
            params_to_update.append(param)
            print("\t",name)
else:
    for name,param in model_ft.named_parameters():
        if param.requires_grad == True:
            print("\t",name)
#Params to learn:
#	 fc.0.weight
#	 fc.0.bias
#model_ft

在这里插入图片描述

4. 优化器设置

  • 进行学习率衰减。
optimizer_ft = optim.Adam(params_to_update, lr=1e-2)
scheduler = optim.lr_scheduler.StepLR(optimizer_ft, step_size=7, gamma=0.1)#学习率每7个epoch衰减成原来的1/10
#最后一层已经LogSoftmax()了,所以不能nn.CrossEntropyLoss()来计算了,nn.CrossEntropyLoss()相当于logSoftmax()和nn.NLLLoss()整合
criterion = nn.NLLLoss()

5. 训练模块

def train_model(model, dataloaders, criterion, optimizer, num_epochs=25, is_inception=False,filename=filename):
    since = time.time()
    best_acc = 0
    """
    checkpoint = torch.load(filename)
    best_acc = checkpoint['best_acc']
    model.load_state_dict(checkpoint['state_dict'])
    optimizer.load_state_dict(checkpoint['optimizer'])
    model.class_to_idx = checkpoint['mapping']
    """
    model.to(device)
​
    val_acc_history = []
    train_acc_history = []
    train_losses = []
    valid_losses = []
    LRs = [optimizer.param_groups[0]['lr']]
​
    best_model_wts = copy.deepcopy(model.state_dict())for epoch in range(num_epochs):
        print('Epoch {}/{}'.format(epoch, num_epochs - 1))
        print('-' * 10)# 训练和验证
        for phase in ['train', 'valid']:
            if phase == 'train':
                model.train()  # 训练
            else:
                model.eval()   # 验证
​
            running_loss = 0.0
            running_corrects = 0# 把数据都取个遍
            for inputs, labels in dataloaders[phase]:
                inputs = inputs.to(device)
                labels = labels.to(device)# 清零
                optimizer.zero_grad()
                # 只有训练的时候计算和更新梯度
                with torch.set_grad_enabled(phase == 'train'):
                    if is_inception and phase == 'train':
                        outputs, aux_outputs = model(inputs)
                        loss1 = criterion(outputs, labels)
                        loss2 = criterion(aux_outputs, labels)
                        loss = loss1 + 0.4*loss2
                    else:#resnet执行的是这里
                        outputs = model(inputs)
                        loss = criterion(outputs, labels)
​
                    _, preds = torch.max(outputs, 1)# 训练阶段更新权重
                    if phase == 'train':
                        loss.backward()
                        optimizer.step()# 计算损失
                running_loss += loss.item() * inputs.size(0)
                running_corrects += torch.sum(preds == labels.data)
​
            epoch_loss = running_loss / len(dataloaders[phase].dataset)
            epoch_acc = running_corrects.double() / len(dataloaders[phase].dataset)
            
            
            time_elapsed = time.time() - since
            print('Time elapsed {:.0f}m {:.0f}s'.format(time_elapsed // 60, time_elapsed % 60))
            print('{} Loss: {:.4f} Acc: {:.4f}'.format(phase, epoch_loss, epoch_acc))# 得到最好那次的模型
            if phase == 'valid' and epoch_acc > best_acc:
                best_acc = epoch_acc
                best_model_wts = copy.deepcopy(model.state_dict())
                state = {
                  'state_dict': model.state_dict(),
                  'best_acc': best_acc,
                  'optimizer' : optimizer.state_dict(),
                }
                torch.save(state, filename)
            if phase == 'valid':
                val_acc_history.append(epoch_acc)
                valid_losses.append(epoch_loss)
                scheduler.step(epoch_loss)
            if phase == 'train':
                train_acc_history.append(epoch_acc)
                train_losses.append(epoch_loss)
        
        print('Optimizer learning rate : {:.7f}'.format(optimizer.param_groups[0]['lr']))
        LRs.append(optimizer.param_groups[0]['lr'])
        print()
​
    time_elapsed = time.time() - since
    print('Training complete in {:.0f}m {:.0f}s'.format(time_elapsed // 60, time_elapsed % 60))
    print('Best val Acc: {:4f}'.format(best_acc))# 训练完后用最好的一次当做模型最终的结果
    model.load_state_dict(best_model_wts)
    return model, val_acc_history, train_acc_history, valid_losses, train_losses, LRs 

model_ft, val_acc_history, train_acc_history, valid_losses, train_losses, LRs  = train_model(model_ft, dataloaders, criterion, optimizer_ft, num_epochs=20, is_inception=(model_name=="inception"))

在这里插入图片描述

  • 再次继续训练所有层。
for param in model_ft.parameters():
    param.requires_grad = True#再继续训练所有的参数,学习率调小一点
optimizer = optim.Adam(params_to_update, lr=1e-4)
scheduler = optim.lr_scheduler.StepLR(optimizer_ft, step_size=7, gamma=0.1)#损失函数
criterion = nn.NLLLoss()

#Load the checkpoint​
checkpoint = torch.load(filename)
best_acc = checkpoint['best_acc']
model_ft.load_state_dict(checkpoint['state_dict'])
optimizer.load_state_dict(checkpoint['optimizer'])
#model_ft.class_to_idx = checkpoint['mapping']

model_ft, val_acc_history, train_acc_history, valid_losses, train_losses, LRs  = train_model(model_ft, dataloaders, criterion, optimizer, num_epochs=10, is_inception=(model_name=="inception"))

在这里插入图片描述

6. 测试模型效果

  • 输入一张测试图像,看看网络的返回结果:
probs, classes = predict(image_path, model)
print(probs)
print(classes)
#[ 0.01558163  0.01541934  0.01452626  0.01443549  0.01407339]
#['70', '3', '45', '62', '55']
  • 这里需要注意的是,预处理方法需相同。
  • 然后,我们加载训练好的模型。
model_ft, input_size = initialize_model(model_name, 102, feature_extract, use_pretrained=True)#GPU模式
model_ft = model_ft.to(device)#保存文件的名字
filename='seriouscheckpoint.pth'#加载模型
checkpoint = torch.load(filename)
best_acc = checkpoint['best_acc']
model_ft.load_state_dict(checkpoint['state_dict'])
  • 测试数据处理方法需要跟训练时一直才可以。
  • crop 操作的目的是保证输入的大小是一致的。
  • 标准化操作也是必须的,用跟训练数据相同的 mean 和 std,但是需要注意一点训练数据是在 0-1 上进行标准化,所以测试数据也需要先归一化。
  • PyTorch 中颜色通道是第一个维度,跟很多工具包都不一样,需要转换。
def process_image(image_path):
    # 读取测试数据
    img = Image.open(image_path)
    # Resize,thumbnail方法只能进行缩小,所以进行了判断
    if img.size[0] > img.size[1]:
        img.thumbnail((10000, 256))
    else:
        img.thumbnail((256, 10000))
    # Crop操作
    left_margin = (img.width-224)/2
    bottom_margin = (img.height-224)/2
    right_margin = left_margin + 224
    top_margin = bottom_margin + 224
    img = img.crop((left_margin, bottom_margin, right_margin,   
                      top_margin))
    # 相同的预处理方法
    img = np.array(img)/255
    mean = np.array([0.485, 0.456, 0.406]) #provided mean
    std = np.array([0.229, 0.224, 0.225]) #provided std
    img = (img - mean)/std
    
    # 注意颜色通道应该放在第一个位置
    img = img.transpose((2, 0, 1))
    
    return img
  • 在数据测试完成后,我们需要对测试数据进行展示,也就是需要进行还原操作。
def imshow(image, ax=None, title=None):
    """展示数据"""
    if ax is None:
        fig, ax = plt.subplots()
    
    # 颜色通道还原
    image = np.array(image).transpose((1, 2, 0))
    
    # 预处理还原
    mean = np.array([0.485, 0.456, 0.406])
    std = np.array([0.229, 0.224, 0.225])
    image = std * image + mean
    image = np.clip(image, 0, 1)
    
    ax.imshow(image)
    ax.set_title(title)
    
    return ax
image_path = 'image_06621.jpg'
img = process_image(image_path)
imshow(img)

在这里插入图片描述

  • 之后进行预测结果的展示。
fig=plt.figure(figsize=(20, 20))
columns =4
rows = 2for idx in range (columns*rows):
    ax = fig.add_subplot(rows, columns, idx+1, xticks=[], yticks=[])
    plt.imshow(im_convert(images[idx]))
    ax.set_title("{} ({})".format(cat_to_name[str(preds[idx])], cat_to_name[str(labels[idx].item())]),
                 color=("green" if cat_to_name[str(preds[idx])]==cat_to_name[str(labels[idx].item())] else "red"))
plt.show()

在这里插入图片描述

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.coloradmin.cn/o/421278.html

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈,一经查实,立即删除!

相关文章

可视化CNN和特征图

卷积神经网络(cnn)是一种神经网络&#xff0c;通常用于图像分类、目标检测和其他计算机视觉任务。CNN的关键组件之一是特征图&#xff0c;它是通过对图像应用卷积滤波器生成的输入图像的表示。 理解卷积层 1、卷积操作 卷积的概念是CNN操作的核心。卷积是一种数学运算&#x…

当深度学习遇上Web开发:Spring和OpenAI如何实现图片生成?

文章目录一、简介1. 什么是Spring和OpenAI2. 生成图像的意义和应用场景二、相关技术介绍1. 深度学习模型2. GAN模型3. TensorFlow框架四、简单的Spring应用1. 搭建Spring项目2. 添加相关依赖3. 编写简单的控制器五、OpenAI API1. 介绍OpenAI API2. 搭建OpenAI API环境3. 配置AP…

Pytorch实现GCN(基于Message Passing消息传递机制实现)

文章目录前言一、导入相关库二、加载Cora数据集三、定义GCN网络3.1 定义GCN层3.1.1 消息传递阶段&#xff08;message&#xff09;3.1.2 消息聚合阶段&#xff08;aggregate&#xff09;3.1.3 节点更新阶段&#xff08;update&#xff09;3.1.4 定义传播过程&#xff08;propag…

AI时代来临,如何把握住文档处理及数据分析的机遇

AI时代来临&#xff0c;如何把握住文档处理及数据分析的机遇前言一、生成式人工智能与元宇宙二、面向图像文档的复杂结构建模研究三、大型语言模型的关键技术和实现ChatGPT 介绍ChatGPT的三个关键技术四、ChatGPT与文档处理未来总结前言 在3月18日&#xff0c;由中国图象图形协…

【CVPR 2023】FasterNet论文详解

论文名称&#xff1a;Run, Don’t Walk: Chasing Higher FLOPS for Faster Neural Networks 论文地址&#xff1a;https://arxiv.org/abs/2303.03667 作者发现由于效率低下的每秒浮点运算&#xff0c;每秒浮点运算的减少并不一定会导致类似水平的延迟减少。提出通过同时减少冗…

YOLOv2论文解读/总结

本章论文&#xff1a; YOLOv2论文&#xff08;YOLO9000: Better, Faster, Stronger&#xff09;&#xff08;原文&#xff0b;解读/总结&#xff0b;翻译&#xff09; 系列论文&#xff1a; YOLOv1论文解读/总结_yolo论文原文_耿鬼喝椰汁的博客-CSDN博客 前言 在YOLOv1推出一…

k8s 部署nginx 实现集群统一配置,自动更新nginx.conf配置文件 总结

k8s 部署nginx 实现集群统一配置&#xff0c;自动更新nginx.conf配置文件 总结 大纲 1 nginx镜像选择2 创建configmap保存nginx配置文件3 使用inotify监控配置文件变化4 Dockerfile创建5 调整镜像原地址使用阿里云6 创建deploy部署文件部署nginx7 测试使用nginx配置文件同步&…

ETL 与 ELT的关键区别

ETL 和 ELT 之间的主要区别在于数据转换发生的时间和地点 — 这些变化可能看起来很小&#xff0c;但会产生很大的影响&#xff01; ETL 和 ELT 是数据团队引入、转换并最终向利益干系人公开数据的两种主要方式。它们是与现代云数据仓库和 ETL 工具的开发并行发展的流程。 在任…

来自清华的AdaSP:基于自适应稀疏成对损失的目标重识别

文章目录摘要1、简介2、相关工作3、方法3.1、稀疏成对损失3.2、最小难度的正样本挖掘4、实验4.1、与其他成对损失的比较4.2、消融研究5、结论摘要 论文链接&#xff1a;https://arxiv.org/abs/2303.18247 物体重识别(ReID)旨在从大型图库中找到与给定探针具有相同身份的实例。…

【分布式版本控制系统Git】| 国内代码托管中心-Gitee、自建代码托管平台-GitLab

目录 一&#xff1a;国内代码托管中心-码云 1. 码云创建远程库 2. IDEA 集成码云 3. 码云复制 GitHub 项目 二&#xff1a;自建代码托管平台-GitLab 1. GitLab 安装 2. IDEA 集成 GitLab 一&#xff1a;国内代码托管中心-码云 众所周知&#xff0c;GitHub 服务器在国外&…

Kaggle 赛题解析 | AMP 帕金森进展预测

文章目录一、前言二、比赛说明1. Evaluation2. Timeline3. Prize4. Code Requirements三、数据说明四、总结&#x1f349; CSDN 叶庭云&#xff1a;https://yetingyun.blog.csdn.net/ 一、前言 竞赛题目&#xff1a;AMP-Parkinson’s Disease Progression Prediction 竞赛地址…

漫画:什么是快速排序算法?

这篇文章&#xff0c;以对话的方式&#xff0c;详细着讲解了快速排序以及排序排序的一些优化。 一禅&#xff1a;归并排序是一种基于分治思想的排序&#xff0c;处理的时候可以采取递归的方式来处理子问题。我弄个例子吧&#xff0c;好理解点。例如对于这个数组arr[] { 4&…

Python调用GPT3.5接口的最新方法

GPT3.5接口调用方法主要包括openai安装、api_requestor.py替换、接口调用、示例程序说明四个部分。 1 openai安装 Python openai库可直接通过pip install openai安装。如果已经安装openai&#xff0c;但是后续提示找不到ChatCompletion&#xff0c;那么请使用命令“pip instal…

07平衡负载:gRPC是如何进行负载均衡的?

负载均衡(Load Balance),其含义就是指将请求负载进行平衡、分摊到多个负载单元上进行运行,从而协同完成工作任务。 负载均衡的主要作用: 提升并发性能:负载均衡通过算法尽可能均匀的分配集群中各节点的工作量,以此提高集群的整体的吞吐量。 提供可伸缩性:可添加或减少服…

【react 全家桶】状态提升

本人大二学生一枚&#xff0c;热爱前端&#xff0c;欢迎来交流学习哦&#xff0c;一起来学习吧。 <专栏推荐> &#x1f525;&#xff1a;js专栏 &#x1f525;&#xff1a;vue专栏 &#x1f525;&#xff1a;react专栏 08 【状态提升】 文章目录08 【状态提升】1.介绍…

【Python实战】Python采集二手车数据——超详细讲解

前言 今天&#xff0c;我们将采集某二手车数据&#xff0c;通过这个案例&#xff0c;加深我们对xpath的理解。通过爬取数据后数据分析能够直观的看到二手车市场中某一品牌的相对数据&#xff0c;能够了解到现在的二手车市场情况&#xff0c;通过分析数据看到二手车的走势&#…

C++初阶 -1- C++入门part2-引用

文章目录6.引用什么是引用&#xff1f;引用的使用引用的应用传值、传引用效率比较权限引用和指针的区别⭐7.内联函数8.auto关键字9.基于范围的for循环10.指针空值——nullptr6.引用 什么是引用&#xff1f; “别名” int a 0; int& b 0;&#x1f446;即 地址为0x00000…

Redis7搭建主从+集群三主三从主从关系由集群分配

目录文件不清晰的去Redis7搭建主从哨兵了解 别忘记关闭防火墙 hash算法一致性 1背景–主从关系由客户端构建分配 三台虚拟机&#xff0c;一台虚拟机搭建两个redis 且两个不同的端口 第一台ip和分配两个端口 6381 6382 --- 192.168.154.128 6381 6382 第二台ip和分配两个…

分析型数据库:分布式分析型数据库

分析型数据库的另外一个发展方向就是以分布式技术来代替MPP的并行计算&#xff0c;一方面分布式技术比MPP有更好的可扩展性&#xff0c;对底层的异构软硬件支持度更好&#xff0c;可以解决MPP数据库的几个关键架构问题。本文介绍分布式分析型数据库。 — 背景介绍— 目前在分布…

人工智能前沿——「全域全知全能」人类新宇宙ChatGPT

&#x1f680;&#x1f680;&#x1f680;OpenAI聊天机器人ChatGPT——「全域全知全能」人类全宇宙大爆炸&#xff01;&#xff01;&#x1f525;&#x1f525;&#x1f525; 一、什么是ChatGPT?&#x1f340;&#x1f340; ChatGPT是生成型预训练变换模型&#xff08;Chat G…