随着 DevOps 理念在中国企业当中的普及和发展,中国企业 DevOps 落地成熟度不断提升,根据中国信通院的数据已有近 6 成企业向全生命周期管理迈进。
而在研发全生命周期管理之中,API 管理的地位愈发显得重要。随着 API 数量的大幅增长,也带来了新的 API 管理需求。
如何在 DevOps 工作流中进行 API 全生命周期管理,对项目研发来说具有重大意义。
Part 1
DevOps 中 API 管理困境
—
在实际的 DevOps 工作流中,API 管理面临着以下 6 大方面的困境:规范、协作、自动化质量、迭代、自动化。
困境一:规范落地执行难
因为团队中的 API 文档质量参差不齐,导致规范很难落地执行。原因在于公司有很多的研发项目和团队,不同的团队有不同的API管理习惯,尤其是常用的 Swagger 方式的管理,很难进行统一的平台化管理。
针对这个困境,可以通过统一的 API 管理平台规范文档的模板,引导编写流程和习惯,也可以通过自动化文档管理工具来简化流程,提高管理效率。
困境二:岗位协作难、信息沟通效率低
在 DevOps 工具链中,每一个工具都会有不同的通知消息,导致重要信息淹没在繁杂的通知中。其次是工作流程环节多、流程长,各岗位角色处理工作节奏不一,导致任务链上下游沟通效率低。
针对这个困境,可以缩短流程环节,多启用自动化流程。同时制定精细化通知规则,根据优先级提供差异化通知样式。最后,再通过每日推送复盘消息,梳理当日工作项和消息通知,防止遗漏。
困境三:自动化测试体系搭建门槛高
传统的自动化接口测试脚本需要用 Python 来编写,门槛高,成本高。又因纯手工编写,开发变动后还须对照文档二次调整接口的所有脚本。另外,自动化测试前期投入时间多,准备工作繁杂。
针对这个困境,可以使用界面化的自动化测试工具,降低脚本编写门槛。还可以通过一站式 API 全生命周期管理平台,免去大量前期工作,提高自动化测试效率。
困境四:API 生产质量和在线异常的发现、跟踪、解决流程过长
当下,在后端的接口自测、前段的 MOCK 测试、冒烟测试、集成测试、异常监控这 5 个环节中都会使用到不同的工具,于是产生了跨工具之间对接复杂、数据隔离,导致 API 生产质量薄弱,以及大量重复工作。
可以通过一体化的 API 管理工具来打通不同环节的工作流,提高研发质量和效能。
困境五:接口文档无法跟踪迭代版本,回溯排查难度大
传统的接口管理工具如 Swagger 没有接口修改记录,缺少版本管理,无法通过日志定位问题,无法进行回滚和历史对比。另外团队也缺少接口迭代计划,导致开发量和影响面分析都难以评估。
接口文档作为研发项目的重要资产,应该对其变更进行盘点,包括提供接口文档的历史记录。可以通过一站式 API 全生命周期管理工具,提供项目级的接口版本管理和接口迭代计划,输出更加优质的接口文档,推进 DevOps 工作流的效率提升。
困境六:DevOps 工作流使用工具多
DevOps 作为宏观层面的研发管理思路,目前并没有大而全的工具,因此带来企业内部工具越积越多,数据流通阻滞,另外,传统接口管理工具功能也很单一。
针对这个问题,可以使用一体化的 API 全生命周期管理工具来实现与接口相关的所有问题,减少对接的工具数量。
Part 2
DevOps 中 API 管理需要什么
—
基于前文对 DevOps 中 API 管理存在的问题,可以梳理出企业 R&D 需要以下六个方面:
-
规范化:一个可配置规范、可自动根据规范生成 API 文档的 API 规范工具
-
高协作:一个接口相关状态自动流转、精准通知信息的 API 协作工具
-
自动化:一个低门槛、智能录入数据的 API 自动化测试工具
-
高质量:一个一站式接口全流程质量管理的 API 测试工具
-
迭代快:一个提供从项目级迭代计划,版本管控,到接口级历史记录的 API 管理工具
-
工具链:一个接口全生命周期且多种对外集成方式的 DevOps 工具
对于满足这些条件的工具,我们定义为 API 全生命周期智能协作平台。在这个一体化平台上,可以从 API 的开发态到发布态到运营态,对 API 进行全生命周期管理。
Part 3
API 全生命周期如何接入 DevOps
—
根据经典的 DevOps 流程图,我们从计划、开发、构建、测试、部署、发布、运维跟监控环节,探讨 API 管理工具对接。
3.1 计划:制定 API 文档规范,搭建层次清晰的 API 仓库
-
根据公司组织架构和系统服务的分布,组成一个层次清晰的接口仓库。
-
统一规范制定,把不同团队的规范统一制定成公司的规范。
-
整理公共材料,把历史文档快捷地导入到 API 仓库里,以及把一些可复用的材料例如经常用的数据结构,API 文档的模板、常用字段描述,都可以存储到 API 仓库,以便于在开发阶段创建新的 API 文档。
3.2 开发:基于代码仓库搭建自动化流程,解决前后端调试和沟通问题
基于代码仓库或 Swagger 或本地研发工具,快速自动生成 API 文档并快速调试,调试没问题后再自动生成 MOCK API和批量接口用例,可以在线分享给前端和测试,文档支持在线评论。最终还可以基于这个 API 文档生成业务代码,协助开发。
3.3 构建:自动打接口版本及自动冒烟测试,支持回滚和减轻测试工程师压力
构建阶段可以基于 CI 触发器自动构建接口版本,方便后续版本回滚,还可基于接口版本做批量测试,以及做版本差异化的对比。
这两个步骤可以让测试对任务进行评估,更好地去减轻测试的压力。目前接口上自动化能测出来的问题,可预先通过 API 测试出来。
3.4 测试:推进自动化测试,降低用例编写成本
在测试阶段我们推荐自动化测试,一体化 API 全生命周期管理工具可以去快速同步前面开发阶段生成的测试用例,然后对这些测试用例进行流程编排,组成自动化测试用例。
也可以基于 API 网关的监控日志做流量回放,自动生成自动化测试用例,识别增量接口并跑模糊测试。可以组成场景案例,做回归测试。模糊测试跟回测试的测试结果发送测试报告,给到对应的测试人员。
3.5 部署:快速测试核心流程,排除环境差异问题
部署之后可以通过 CD 触发器对环境进行预测,试跑核心的测试场景,生成对应的测试报告。可以通过多环境的测试结果进行对比,排查环境差异的问题,也可以在部署好之后进行压力测试。
注:目前 Eolink Apikit 压力测试功能将在年中上线,敬请期待!
3.6 发布:确保对外访问畅通和安全
在发布阶段,主要对接 API 网关,让系统可以正常对外访问,开放接口能力。
3.7 运维:保障服务持续稳定和安全
在运维阶段依然是使用 API 网关,做流量控制、负载均衡或服务治理。在接口开放上可以去做 Open API 调用管控,在线试用跟鉴权。在接口交易上可以去做接口托管、转发跟计算计费以及订单管理。
3.8 监控:实时观察接口运行情况,及时异常告警
可以设置标准的接口监控指标,做更加灵活的监控配置,并对告警进行规则配置预设,当满足这些告警的预设条件时就会发送消息通知,包括手机短信、主流的 IM 工具,以及 Webhook。
在消息通知方面,我们认为不仅仅需要 DevOps 主流程的对接,而是要保证整个 DevOps 信息流的有效和及时传递,因此需要对 API 文档的变更、测试报告、监控告警,进行智能分发。例如进行分级推送、智能归纳、高风险标记等。
【重磅】DevOps 工作流对接 API 全生命周期管理全流程图
Part 4
不同规模团队如何落地实施
—
4.1 大规模团队:全 DevOps 周期的接口自动化
对于大规模团队来说,推荐基于 DevOps 全周期的接口自动化方案,需部署 Eolink Apikit 私有云版本。在这个方案中,可以把 Swagger 的 URL 自动同步到 Eolink Apikit,自动生成文档,进一步基于文档生成业务代码,然后发送到代码仓库,再去触发 CI 流水线,给文档打版本,做模糊测试,并把报告发送给对应的人员。
接下来在 CD 环节部署好服务之后,可以对环境进行预测试,并根据需求做压力测试,并把测试报告发送给对应的相关人员。除了 CICD,还可以集成 Eolink 的网关产品,对 API 进行运维管理。
4.2 小规模团队:高性价比的接口自动化
对于小规模团队来说,性价比更高的 SaaS 企业版,可以使用插件生成 API 文档上传 Eolink Apikit,并进行测试,自动生成测试用例。
目前该高性价比解决方案,已覆盖从设计、开发到构建、发布、部署的环节,对运维、监控、压力测试等环节尚且缺失,对于核心的 API 全自动化的管理流程已完全足够。
Part 5
总结
—
本文提出使用一体化的 API 管理平台在 DevOps 工作流中对 API 进行全生命周期管理,解决过去多个工具之间数据隔离、流程阻滞的问题。
API 全生命周期管理平台 Eolink Apikit 是结合 API 设计、文档管理、自动化测试、监控、研发管理和团队协作的一站式 API 研发协作平台,是 API 研发管理最佳实践产品,可以帮助个人开发者到跨国企业用户,快速、规范地对 API 进行全生命周期管理,提高研发效能。