目录
背影
DBN神经网络的原理
DBN神经网络的定义
受限玻尔兹曼机(RBM)
遗传算法的原理
遗传算法优化深度信念网络DBN的分类识别
基本结构
主要参数
数据
MATALB代码
结果图
展望
背影
DBN是一种深度学习神经网络,拥有提取特征,非监督学习的能力,本文用DBN提取特征,遗传算法具有很好的全局收敛能力,用遗传优化DBN的参数,实现二者长处互补
DBN神经网络的的原理
深度信念神经网络DBN的定义
深度信念网络,DBN,Deep Belief Nets,神经网络的一种。既可以用于非监督学习,类似于一个自编码机;也可以用于监督学习,作为分类器来使用。
从非监督学习来讲,其目的是尽可能地保留原始特征的特点,同时降低特征的维度。从监督学习来讲,其目的在于使得分类错误率尽可能地小。而不论是监督学习还是非监督学习,DBN的本质都是Feature Learning的过程,即如何得到更好的特征表达。
作为神经网络,神经元自然是其必不可少的组成部分。DBN由若干层神经元构成,组成元件是受限玻尔兹曼机(RBM)。