WEB网站安全检测系统设计与实现

news2025/2/25 13:30:22

目 录
1 引言 1
2 Web服务器所受的威胁及防御 1
2.1 缓冲区溢出 1
2.2 SQL注入攻击 1
2.3 基于脚本的DDos攻击 2
2.4 其他的不安全因素 3
3 Web的木马检测系统的设计 4
3.1 体系结构 4
3.2 处理流程 5
3.3 对客户端访问的响应 7
3.4 策略引擎的设计 8
3.4.1 策略的属性 8
3.4.2 策略的加载 9
3.4.3 策略的调度 10
3.4.4 策略的接口 10
4 Web的木马检测系统的实现 11
4.1 基于ISAPI 的解析及响应模块的实现 11
4.1.1 使用ISAPI Filter获取Http报文信息 11
4.1.2 使用ISAPI进行Http响应 13
4.1.3 在服务器上的安装配置ISAPI Filter 14
4.2 基于Lua的策略实现 15
4.2.1 对策略的封装 15
4.2.2 Lua策略脚本示例 15
4.3 基于xml的策略管理 16
5 系统运行过程及测试 16
结 论 18
参考文献 19
致 谢 20
3Web的木马检测系统的设计
由于系统要对客户端发送的Http报文进行分析,这需要对Http报文进行解析,Http报文解析的方式主要有两种:
(1)自解析:系统对原始数据报文自行解析;
(2)由Web服务器进行解析,需要时系统通过Web服务器提供的接口查询。
方式(1)可以提供比方式(2)更好的移植性,但这种报文解析的方式需要一种截获下层原始报文的能力,这可以通过截获传输层或网际层报文的实现,由于我们将这套系统定位于仅针对Web访问的木马检测,我们对Http协议外的报文并不关心,所以我们选择方式(2)作为我们的Http报文解析方案,即通过Web服务器提供的接口仅仅截获应用层的Http报文。
要对客户端发起的请求进行完全的监控光靠检测客户端的行为是不够的,因为这样我们只知道客户端发起什么样的请求但无法知道服务器端是如何对客户端进行响应的。一次完整的Http会话既然包括客户端发送请求和服务器端对请求的响应,那么只有监控服务器端响应的内容后,才能知道这次Http会话何时结束。如果Web服务器提供Http报文封装的接口,则在对客户端进行响应时我们也尽量调用Web服务器的这些接口而不是自己组装Http报文。
这样,这套木马检测系统的核心便是其策略引擎, 通过强大而灵活的策略引擎来实现特征检测或者异常检测。下面将介绍这个Web的木马检测系统的具体体系结构和处理流程。
3.1体系结构
通常一个系统会采用多层或者单层的体系结构。多层的结构将不同功能的模块进行了划分,层与层之间靠定义好的接口进行通信,单层的结构将模块都紧耦合在一起,模块与模块间有交叉调用。多层的结构比单层的结构具有良好的扩展性,而单层结构可以模块间的交互更加高效。为了能使系统适合不同的Web服务器平台,综合以上的因素考虑后,本系统采用分层的体系结构。图1为本系统的体系结构图。
在这里插入图片描述

如图1所示,这个Web的木马检测系统主要分层了以下三层:
(1)解析及响应层
这一层为整个防御系统提供对客户端发送的Http报文请求的解析及服务器响应时Http报文封装的接口。当有客户端访问服务器时,通知策略引擎调度策略检测客户端的访问信息,并为策略引擎提供响应的实现。按照前面的分析,这一层是由服务器提供的接口封装实现。
(2)策略引擎
这一层的作用是策略的调度,在策略中通过“解析及响应”层提供的接口获取客户端的信息,具体的响应也交给“解析及响应”层完成。同时策略引擎还需要调度数据管理层完成策略的加载,以及日志记录的功能。
(3)数据管理
这一层提供日志记录、配置管理及策略脚本解析的功能。所以对数据进行处理的过程都是在这一层里完成。
每一层都完成相对独立的功能,当某一层的实现发生变化时,只要提供的接口没有变化,对其他几层就没有影响。这样整个结构就有很大的扩展性,例如:我们可以把解析和响应层的具体实现是由调用Web服务器自身接口的方式替换为直接截获传输层网络层封包的方式等等。下面将介绍具体的处理流程。
3.2处理流程
Web IPS的处理流程如图2所示,具体流程如下:当客户端发送Http请求时,原始的数据报文经Http报文解析模块解析,报文解析模块会通知策略引擎模块对客户端的信息进行检测,策略引擎会依据策略脚本中编写的策略,通知Http响应模块对客户端的行为做出响应,并依据策略脚本中的策略,通知日志记录模块记录相应的日志。
依据Web IPS系统的体系结构及处理流程,系统主要模块和作用如下:
(1)IPS管理模块
负责管理和连接各个模块,管理数据流,读取配置文件后完成整个系统的初始化,对整个系统的状态进行管理:运行,停止,重新加载。当Http报文解析模块通知有客户端的访问时,调用策略引擎对客户端的行为及信息进行检测,对策略引擎返回的结果通知Http响应模块进行响应。
(2)配置文件模块
主要完成配置文件的读取及保存。提供统一的接口,具体实现可以根据需要而作修改。
(3)Http报文的解析模块
利用Web服务器提供的接口,对客户端访问Web服务器时提交的原始数据进行解析,并通知IPS管理模块收到客户端的访问请求,请求策略引擎检测客户端的访问行为。
Http报文的解析模块中会为每一个客户端生成一个实现了能检测客户端相关信息的接口的对象。在一般的Web脚本(例如:ASP、ASP.NET、PHP等等)中也会有这样一种获取客户端信息的接口。

#include <setjmp.h>
#include <stdlib.h>
#include <string.h>

#define ldo_c
#define LUA_CORE

#include "lua.h"

#include "ldebug.h"
#include "ldo.h"
#include "lfunc.h"
#include "lgc.h"
#include "lmem.h"
#include "lobject.h"
#include "lopcodes.h"
#include "lparser.h"
#include "lstate.h"
#include "lstring.h"
#include "ltable.h"
#include "ltm.h"
#include "lundump.h"
#include "lvm.h"
#include "lzio.h"




/*
** {======================================================
** Error-recovery functions
** =======================================================
*/


/* chain list of long jump buffers */
struct lua_longjmp {
  struct lua_longjmp *previous;
  luai_jmpbuf b;
  volatile int status;  /* error code */
};


void luaD_seterrorobj (lua_State *L, int errcode, StkId oldtop) {
  switch (errcode) {
    case LUA_ERRMEM: {
      setsvalue2s(L, oldtop, luaS_newliteral(L, MEMERRMSG));
      break;
    }
    case LUA_ERRERR: {
      setsvalue2s(L, oldtop, luaS_newliteral(L, "error in error handling"));
      break;
    }
    case LUA_ERRSYNTAX:
    case LUA_ERRRUN: {
      setobjs2s(L, oldtop, L->top - 1);  /* error message on current top */
      break;
    }
  }
  L->top = oldtop + 1;
}


static void restore_stack_limit (lua_State *L) {
  lua_assert(L->stack_last - L->stack == L->stacksize - EXTRA_STACK - 1);
  if (L->size_ci > LUAI_MAXCALLS) {  /* there was an overflow? */
    int inuse = cast_int(L->ci - L->base_ci);
    if (inuse + 1 < LUAI_MAXCALLS)  /* can `undo' overflow? */
      luaD_reallocCI(L, LUAI_MAXCALLS);
  }
}


static void resetstack (lua_State *L, int status) {
  L->ci = L->base_ci;
  L->base = L->ci->base;
  luaF_close(L, L->base);  /* close eventual pending closures */
  luaD_seterrorobj(L, status, L->base);
  L->nCcalls = 0;
  L->allowhook = 1;
  restore_stack_limit(L);
  L->errfunc = 0;
  L->errorJmp = NULL;
}


void luaD_throw (lua_State *L, int errcode) {
  if (L->errorJmp) {
    L->errorJmp->status = errcode;
    LUAI_THROW(L, L->errorJmp);
  }
  else {
    L->status = cast_byte(errcode);
    if (G(L)->panic) {
      resetstack(L, errcode);
      lua_unlock(L);
      G(L)->panic(L);
    }
    exit(EXIT_FAILURE);
  }
}


int luaD_rawrunprotected (lua_State *L, Pfunc f, void *ud) {
  struct lua_longjmp lj;
  lj.status = 0;
  lj.previous = L->errorJmp;  /* chain new error handler */
  L->errorJmp = &lj;
  LUAI_TRY(L, &lj,
    (*f)(L, ud);
  );
  L->errorJmp = lj.previous;  /* restore old error handler */
  return lj.status;
}

/* }====================================================== */


static void correctstack (lua_State *L, TValue *oldstack) {
  CallInfo *ci;
  GCObject *up;
  L->top = (L->top - oldstack) + L->stack;
  for (up = L->openupval; up != NULL; up = up->gch.next)
    gco2uv(up)->v = (gco2uv(up)->v - oldstack) + L->stack;
  for (ci = L->base_ci; ci <= L->ci; ci++) {
    ci->top = (ci->top - oldstack) + L->stack;
    ci->base = (ci->base - oldstack) + L->stack;
    ci->func = (ci->func - oldstack) + L->stack;
  }
  L->base = (L->base - oldstack) + L->stack;
}


void luaD_reallocstack (lua_State *L, int newsize) {
  TValue *oldstack = L->stack;
  int realsize = newsize + 1 + EXTRA_STACK;
  lua_assert(L->stack_last - L->stack == L->stacksize - EXTRA_STACK - 1);
  luaM_reallocvector(L, L->stack, L->stacksize, realsize, TValue);
  L->stacksize = realsize;
  L->stack_last = L->stack+newsize;
  correctstack(L, oldstack);
}


void luaD_reallocCI (lua_State *L, int newsize) {
  CallInfo *oldci = L->base_ci;
  luaM_reallocvector(L, L->base_ci, L->size_ci, newsize, CallInfo);
  L->size_ci = newsize;
  L->ci = (L->ci - oldci) + L->base_ci;
  L->end_ci = L->base_ci + L->size_ci - 1;
}


void luaD_growstack (lua_State *L, int n) {
  if (n <= L->stacksize)  /* double size is enough? */
    luaD_reallocstack(L, 2*L->stacksize);
  else
    luaD_reallocstack(L, L->stacksize + n);
}


static CallInfo *growCI (lua_State *L) {
  if (L->size_ci > LUAI_MAXCALLS)  /* overflow while handling overflow? */
    luaD_throw(L, LUA_ERRERR);
  else {
    luaD_reallocCI(L, 2*L->size_ci);
    if (L->size_ci > LUAI_MAXCALLS)
      luaG_runerror(L, "stack overflow");
  }
  return ++L->ci;
}


void luaD_callhook (lua_State *L, int event, int line) {
  lua_Hook hook = L->hook;
  if (hook && L->allowhook) {
    ptrdiff_t top = savestack(L, L->top);
    ptrdiff_t ci_top = savestack(L, L->ci->top);
    lua_Debug ar;
    ar.event = event;
    ar.currentline = line;
    if (event == LUA_HOOKTAILRET)
      ar.i_ci = 0;  /* tail call; no debug information about it */
    else
      ar.i_ci = cast_int(L->ci - L->base_ci);
    luaD_checkstack(L, LUA_MINSTACK);  /* ensure minimum stack size */
    L->ci->top = L->top + LUA_MINSTACK;
    lua_assert(L->ci->top <= L->stack_last);
    L->allowhook = 0;  /* cannot call hooks inside a hook */
    lua_unlock(L);
    (*hook)(L, &ar);
    lua_lock(L);
    lua_assert(!L->allowhook);
    L->allowhook = 1;
    L->ci->top = restorestack(L, ci_top);
    L->top = restorestack(L, top);
  }
}


static StkId adjust_varargs (lua_State *L, Proto *p, int actual) {
  int i;
  int nfixargs = p->numparams;
  Table *htab = NULL;
  StkId base, fixed;
  for (; actual < nfixargs; ++actual)
    setnilvalue(L->top++);
#if defined(LUA_COMPAT_VARARG)
  if (p->is_vararg & VARARG_NEEDSARG) { /* compat. with old-style vararg? */
    int nvar = actual - nfixargs;  /* number of extra arguments */
    lua_assert(p->is_vararg & VARARG_HASARG);
    luaC_checkGC(L);
    htab = luaH_new(L, nvar, 1);  /* create `arg' table */
    for (i=0; i<nvar; i++)  /* put extra arguments into `arg' table */
      setobj2n(L, luaH_setnum(L, htab, i+1), L->top - nvar + i);
    /* store counter in field `n' */
    setnvalue(luaH_setstr(L, htab, luaS_newliteral(L, "n")), cast_num(nvar));
  }
#endif
  /* move fixed parameters to final position */
  fixed = L->top - actual;  /* first fixed argument */
  base = L->top;  /* final position of first argument */
  for (i=0; i<nfixargs; i++) {
    setobjs2s(L, L->top++, fixed+i);
    setnilvalue(fixed+i);
  }
  /* add `arg' parameter */
  if (htab) {
    sethvalue(L, L->top++, htab);
    lua_assert(iswhite(obj2gco(htab)));
  }
  return base;
}


static StkId tryfuncTM (lua_State *L, StkId func) {
  const TValue *tm = luaT_gettmbyobj(L, func, TM_CALL);
  StkId p;
  ptrdiff_t funcr = savestack(L, func);
  if (!ttisfunction(tm))
    luaG_typeerror(L, func, "call");
  /* Open a hole inside the stack at `func' */
  for (p = L->top; p > func; p--) setobjs2s(L, p, p-1);
  incr_top(L);
  func = restorestack(L, funcr);  /* previous call may change stack */
  setobj2s(L, func, tm);  /* tag method is the new function to be called */
  return func;
}



#define inc_ci(L) \
  ((L->ci == L->end_ci) ? growCI(L) : \
   (condhardstacktests(luaD_reallocCI(L, L->size_ci)), ++L->ci))


int luaD_precall (lua_State *L, StkId func, int nresults) {
  LClosure *cl;
  ptrdiff_t funcr;
  if (!ttisfunction(func)) /* `func' is not a function? */
    func = tryfuncTM(L, func);  /* check the `function' tag method */
  funcr = savestack(L, func);
  cl = &clvalue(func)->l;
  L->ci->savedpc = L->savedpc;
  if (!cl->isC) {  /* Lua function? prepare its call */
    CallInfo *ci;
    StkId st, base;
    Proto *p = cl->p;
    luaD_checkstack(L, p->maxstacksize);
    func = restorestack(L, funcr);
    if (!p->is_vararg) {  /* no varargs? */
      base = func + 1;
      if (L->top > base + p->numparams)
        L->top = base + p->numparams;
    }
    else {  /* vararg function */
      int nargs = cast_int(L->top - func) - 1;
      base = adjust_varargs(L, p, nargs);
      func = restorestack(L, funcr);  /* previous call may change the stack */
    }
    ci = inc_ci(L);  /* now `enter' new function */
    ci->func = func;
    L->base = ci->base = base;
    ci->top = L->base + p->maxstacksize;
    lua_assert(ci->top <= L->stack_last);
    L->savedpc = p->code;  /* starting point */
    ci->tailcalls = 0;
    ci->nresults = nresults;
    for (st = L->top; st < ci->top; st++)
      setnilvalue(st);
    L->top = ci->top;
    if (L->hookmask & LUA_MASKCALL) {
      L->savedpc++;  /* hooks assume 'pc' is already incremented */
      luaD_callhook(L, LUA_HOOKCALL, -1);
      L->savedpc--;  /* correct 'pc' */
    }
    return PCRLUA;
  }
  else {  /* if is a C function, call it */
    CallInfo *ci;
    int n;
    luaD_checkstack(L, LUA_MINSTACK);  /* ensure minimum stack size */
    ci = inc_ci(L);  /* now `enter' new function */
    ci->func = restorestack(L, funcr);
    L->base = ci->base = ci->func + 1;
    ci->top = L->top + LUA_MINSTACK;
    lua_assert(ci->top <= L->stack_last);
    ci->nresults = nresults;
    if (L->hookmask & LUA_MASKCALL)
      luaD_callhook(L, LUA_HOOKCALL, -1);
    lua_unlock(L);
    n = (*curr_func(L)->c.f)(L);  /* do the actual call */
    lua_lock(L);
    if (n < 0)  /* yielding? */
      return PCRYIELD;
    else {
      luaD_poscall(L, L->top - n);
      return PCRC;
    }
  }
}


static StkId callrethooks (lua_State *L, StkId firstResult) {
  ptrdiff_t fr = savestack(L, firstResult);  /* next call may change stack */
  luaD_callhook(L, LUA_HOOKRET, -1);
  if (f_isLua(L->ci)) {  /* Lua function? */
    while (L->ci->tailcalls--)  /* call hook for eventual tail calls */
      luaD_callhook(L, LUA_HOOKTAILRET, -1);
  }
  return restorestack(L, fr);
}


int luaD_poscall (lua_State *L, StkId firstResult) {
  StkId res;
  int wanted, i;
  CallInfo *ci;
  if (L->hookmask & LUA_MASKRET)
    firstResult = callrethooks(L, firstResult);
  ci = L->ci--;
  res = ci->func;  /* res == final position of 1st result */
  wanted = ci->nresults;
  L->base = (ci - 1)->base;  /* restore base */
  L->savedpc = (ci - 1)->savedpc;  /* restore savedpc */
  /* move results to correct place */
  for (i = wanted; i != 0 && firstResult < L->top; i--)
    setobjs2s(L, res++, firstResult++);
  while (i-- > 0)
    setnilvalue(res++);
  L->top = res;
  return (wanted - LUA_MULTRET);  /* 0 iff wanted == LUA_MULTRET */
}


/*
** Call a function (C or Lua). The function to be called is at *func.
** The arguments are on the stack, right after the function.
** When returns, all the results are on the stack, starting at the original
** function position.
*/ 
void luaD_call (lua_State *L, StkId func, int nResults) {
  if (++L->nCcalls >= LUAI_MAXCCALLS) {
    if (L->nCcalls == LUAI_MAXCCALLS)
      luaG_runerror(L, "C stack overflow");
    else if (L->nCcalls >= (LUAI_MAXCCALLS + (LUAI_MAXCCALLS>>3)))
      luaD_throw(L, LUA_ERRERR);  /* error while handing stack error */
  }
  if (luaD_precall(L, func, nResults) == PCRLUA)  /* is a Lua function? */
    luaV_execute(L, 1);  /* call it */
  L->nCcalls--;
  luaC_checkGC(L);
}


static void resume (lua_State *L, void *ud) {
  StkId firstArg = cast(StkId, ud);
  CallInfo *ci = L->ci;
  if (L->status != LUA_YIELD) {  /* start coroutine */
    lua_assert(ci == L->base_ci && firstArg > L->base);
    if (luaD_precall(L, firstArg - 1, LUA_MULTRET) != PCRLUA)
      return;
  }
  else {  /* resuming from previous yield */
    if (!f_isLua(ci)) {  /* `common' yield? */
      /* finish interrupted execution of `OP_CALL' */
      lua_assert(GET_OPCODE(*((ci-1)->savedpc - 1)) == OP_CALL ||
                 GET_OPCODE(*((ci-1)->savedpc - 1)) == OP_TAILCALL);
      if (luaD_poscall(L, firstArg))  /* complete it... */
        L->top = L->ci->top;  /* and correct top if not multiple results */
    }
    else  /* yielded inside a hook: just continue its execution */
      L->base = L->ci->base;
  }
  L->status = 0;
  luaV_execute(L, cast_int(L->ci - L->base_ci));
}


static int resume_error (lua_State *L, const char *msg) {
  L->top = L->ci->base;
  setsvalue2s(L, L->top, luaS_new(L, msg));
  incr_top(L);
  lua_unlock(L);
  return LUA_ERRRUN;
}


LUA_API int lua_resume (lua_State *L, int nargs) {
  int status;
  lua_lock(L);
  if (L->status != LUA_YIELD) {
    if (L->status != 0)
      return resume_error(L, "cannot resume dead coroutine");
    else if (L->ci != L->base_ci)
      return resume_error(L, "cannot resume non-suspended coroutine");
  }
  luai_userstateresume(L, nargs);
  lua_assert(L->errfunc == 0 && L->nCcalls == 0);
  status = luaD_rawrunprotected(L, resume, L->top - nargs);
  if (status != 0) {  /* error? */
    L->status = cast_byte(status);  /* mark thread as `dead' */
    luaD_seterrorobj(L, status, L->top);
    L->ci->top = L->top;
  }
  else
    status = L->status;
  lua_unlock(L);
  return status;
}


LUA_API int lua_yield (lua_State *L, int nresults) {
  luai_userstateyield(L, nresults);
  lua_lock(L);
  if (L->nCcalls > 0)
    luaG_runerror(L, "attempt to yield across metamethod/C-call boundary");
  L->base = L->top - nresults;  /* protect stack slots below */
  L->status = LUA_YIELD;
  lua_unlock(L);
  return -1;
}


int luaD_pcall (lua_State *L, Pfunc func, void *u,
                ptrdiff_t old_top, ptrdiff_t ef) {
  int status;
  unsigned short oldnCcalls = L->nCcalls;
  ptrdiff_t old_ci = saveci(L, L->ci);
  lu_byte old_allowhooks = L->allowhook;
  ptrdiff_t old_errfunc = L->errfunc;
  L->errfunc = ef;
  status = luaD_rawrunprotected(L, func, u);
  if (status != 0) {  /* an error occurred? */
    StkId oldtop = restorestack(L, old_top);
    luaF_close(L, oldtop);  /* close eventual pending closures */
    luaD_seterrorobj(L, status, oldtop);
    L->nCcalls = oldnCcalls;
    L->ci = restoreci(L, old_ci);
    L->base = L->ci->base;
    L->savedpc = L->ci->savedpc;
    L->allowhook = old_allowhooks;
    restore_stack_limit(L);
  }
  L->errfunc = old_errfunc;
  return status;
}



/*
** Execute a protected parser.
*/
struct SParser {  /* data to `f_parser' */
  ZIO *z;
  Mbuffer buff;  /* buffer to be used by the scanner */
  const char *name;
};

static void f_parser (lua_State *L, void *ud) {
  int i;
  Proto *tf;
  Closure *cl;
  struct SParser *p = cast(struct SParser *, ud);
  int c = luaZ_lookahead(p->z);
  luaC_checkGC(L);
  tf = ((c == LUA_SIGNATURE[0]) ? luaU_undump : luaY_parser)(L, p->z,
                                                             &p->buff, p->name);
  cl = luaF_newLclosure(L, tf->nups, hvalue(gt(L)));
  cl->l.p = tf;
  for (i = 0; i < tf->nups; i++)  /* initialize eventual upvalues */
    cl->l.upvals[i] = luaF_newupval(L);
  setclvalue(L, L->top, cl);
  incr_top(L);
}


int luaD_protectedparser (lua_State *L, ZIO *z, const char *name) {
  struct SParser p;
  int status;
  p.z = z; p.name = name;
  luaZ_initbuffer(L, &p.buff);
  status = luaD_pcall(L, f_parser, &p, savestack(L, L->top), L->errfunc);
  luaZ_freebuffer(L, &p.buff);
  return status;
}



在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.coloradmin.cn/o/40472.html

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈,一经查实,立即删除!

相关文章

9、软件包管理

文章目录9、软件包管理9.1 RPM9.1.1 RPM 概述9.1.2 RPM 查询命令&#xff08;rpm -qa&#xff09;9.1.3 RPM 卸载命令&#xff08;rpm -e&#xff09;9.1.4 RPM 安装命令&#xff08;rpm -ivh&#xff09;9.2 YUM 仓库配置9.2.1 YUM 概述9.2.2 YUM 的常用命令9.2.3 修改网络 YU…

Linux系统中基本的启动方式

大家好&#xff0c; 今天主要和大家聊一聊&#xff0c;Linux系统的启动方式有哪些&#xff1f; 目录 第一&#xff1a;启动方式基本简介 第二​&#xff1a;启动模式的选择 第一&#xff1a;启动方式基本简介 Linux系统支持多种启动方式&#xff0c;可以从SD/EMMC、NAND Flas…

Jumperserver堡垒机管理服务器实战

一、 Jumpserver堡垒机简介 1、跳板机简介 跳板机就是一台服务器,开发或运维人员在维护过程中首先要统一登录到这台服务器,然后再登录到目标设备进行维护和操作。 跳板机缺点:没有实现对运维人员操作行为的控制和审计,使用跳板机的过程中还是会出现误操作、违规操作导致的…

Vue实现角色权限动态路由详细教程,在vue-admin-template基础上修改,附免费完整项目代码

前言 vue-admin-template是一个最基础的后台管理模板&#xff0c;只包含了一个后台需要最基础的东西&#xff0c;如果clone的是它的master分支&#xff0c;是没有权限管理的&#xff0c;只有完整版vue-element-admin有这个功能&#xff0c;但是为了小小的一个权限管理而用比较…

java框架 Spring之 AOP 面向切面编程 切入点表达式 AOP通知类型 Spring事务

AOP(Aspect Oriented Programming)面向切面编程&#xff0c;一种编程范式&#xff0c;指导开发者如何组织程序结构 作用&#xff1a;在不惊动原始设计的基础上为其进行功能增强 Spring理念&#xff1a;无入侵式/无侵入式 我们在不修改源代码的时候&#xff0c;为了执行另外的…

idea如何快速找到项目中对应的类(包括源码)

文章目录1. 前言2. 先说结论3. idea的全局搜索功能 MethodValidation4. 搜索spring源码(例子)1. 前言 最近在看某些功能的时候&#xff0c;会去看对应的源码&#xff0c;而有时候只知道类名&#xff0c;不知道从哪里进入源码&#xff0c;因此就比较好奇&#xff0c;idea的全局…

JAVA类加载器

JAVA是一种解释型语言&#xff0c;也就是一种边解释边执行的语言。JAVA所有源代码在执行之前&#xff0c;先要被编译成class文件&#xff0c;然后类加载器加载解析class文件&#xff0c;最后才执行。 JVM自带了几个类型的类加载器&#xff0c;JVM使用分层的软件架构方式设计类…

蜂鸟E203学习笔记(二)--蜂鸟E203总体框架

蜂鸟E203总体框架 蜂鸟E203处理器系统如下图所示 一、蜂鸟E203处理器核设计总览和顶层 1.1 蜂鸟E203处理器核的设计理念 模块化和可重用性&#xff1a;将处理器分成几个主体模块&#xff0c;每个单元之间的接口简单清晰。面积最小化&#xff1a;追求低功耗和小面积&#x…

DS18B20

一、DS18B20初始化时序图 &#xff08;1&#xff09; 先将数据线置高电平“1”。 &#xff08;2&#xff09; 延时&#xff08;该时间要求的不是很严格&#xff0c;但是尽可能的短一点&#xff09;。 &#xff08;3&#xff09; 数据线拉到低电平“0”。 &#xff08;4&#xf…

【配送路径规划】基于matlab遗传算法求解静态外卖骑手路径规划问题【含Matlab源码 2248期】

⛄一、遗传算法求解静态外卖骑手路径规划问题 1 模型假设 外卖配送的实际运行是一个复杂的过程, 受诸多因素影响, 为了建立调度模型, 本文做如下假设。 (1) 外卖配送更多的是服务特殊群体, 所以本文认为外卖配送是一种预约型配送, 即在进行调度安排前, 己经获取了所有顾客的地…

Java并发-生产者消费者实现

生产者与消费者模型介绍 定义&#xff1a; 生产者消费者模式是一个十分经典的多线程并发协作的模式。 意义&#xff1a;弄懂生产者消费者问题能够让我们对并发编程的理解加深。 介绍&#xff1a;所谓生产者 - 消费者问题&#xff0c;实际上主要是包含了两类线程&#xff0c;…

Python面向对象编程之对象行为与特殊方法

面向对象编程之对象行为与特殊方法 python中的对象通常根据它们的行为和实现的功能进行分类。例如&#xff0c;所有序列类型都分在一组&#xff0c;如字符串&#xff0c;列表和元组&#xff0c;就是因为它们都支持一组相同的序列操作&#xff0c;如s[n], len[s]等。 所有基本…

【学习总结】LSD-SLAM配置与运行记录

今天安装测试了LSD-SLAM&#xff0c;记录配置中遇到的问题。 LSD-SLAM论文 LSD-SLAM: Large-Scale Direct Monocular SLAM, J. Engel, T. Schps, D. Cremers, ECCV 14 Semi-Dense Visual Odometry for a Monocular Camera, J. Engel, J. Sturm, D. Cremers, ICCV 13 配置环境…

SpringBoot实现多数据源(四)【集成多个 Mybatis 框架】

上一篇文章《SpringBoot实现多数据源&#xff08;三&#xff09;【AOP 自定义注解】》 四、集成多个 Mybatis 框架 实现步骤 创建一个 dynamic_mybatis 的springboot项目&#xff0c;导入依赖 pom.xml <dependencies><!--jdbc--><dependency><groupId…

Fiddler抓取手机app包

文章目录1. 配置fiddler1.1 下载fiddler1.2 配置fiddler2. 安装证书2.1 查询主机ip2.2下载证书2.3 手机安装证书2.4 查询安装的证书3. 手机设置代理4. 测试是否抓包成功大前提&#xff1a;手机和Fiddler所在的主机在同一网段&#xff0c;且能够互相访问 1. 配置fiddler 1.1 下…

第三十八篇 Vue中封装Swiper组件 2.0

上一篇内容讲到封装Swiper组件的一个过程&#xff0c;如果是静态的数据封装组件初始化在mounted当中并无多大影响&#xff0c;但是这样封装的组件复用性较低或者可能只使用一次&#xff0c;那么在动态使用通过ajax请求数据需要面临的是swiper初始化过早的问题&#xff0c;在mou…

【车间调度】基于matlab混合蛙跳算法 (SFLA) 求解简单调度问题【含Matlab源码 2247期】

⛄一、车间调度简介 在传统的SFLA中&#xff0c;每一个青蛙的位置代表一个解&#xff0c;若干个青蛙组成的种群代表一个解的集合&#xff0c;种群被划分为不同的组&#xff0c;即模因组&#xff0c;对每个模因组执行搜索过程&#xff0c;当达到终止条件后&#xff0c;重新将模…

编译原理13:SLR(1)分析表、LR(1)分析表

更强的LR分析 可以根据当前单词&#xff0c;来选择是移进还是归约。只要所有移进项目中的点后面的那些终结符&#xff0c;与归约项目生成的非终结符的Follow集合的元素没有重叠。若当前单词属于上述Follow集合里则规约 SLR(1)冲突解决办法 SLR(1)分析表的构造 SLR(1)分析表的构…

001. 组合

1.题目链接&#xff1a; 77. 组合 2.大概思路&#xff1a; 2.1题目要求&#xff1a; 给两个值 n 和 k &#xff0c;要求从[1&#xff0c;n]的区间中&#xff0c;输出所有元素数量为k的组合。&#xff08;不能有[1,1]&#xff0c;值只能取一次&#xff09; 2.2思路&#xff…

(十七)Spring6整合JUnit

文章目录环境Spring对JUnit4的支持Spring对JUnit5的支持上一篇&#xff1a;&#xff08;十六&#xff09;Spring对事务的支持 环境 spring6里程碑版本的仓库 依赖&#xff1a;spring context依赖、spring对junit的支持相关依赖、junit4依赖、junit5依赖 <!--配置多个仓库-…