Halo,这里是Ppeua。平时主要更新C语言,C++,数据结构算法......感兴趣就关注我吧!你定不会失望。
🌈个人主页:主页链接
🌈算法专栏:专栏链接
我会一直往里填充内容哒!
🌈LeetCode专栏:专栏链接
目前在刷初级算法的LeetBook 。若每日一题当中有力所能及的题目,也会当天做完发出
🌈代码仓库:Gitee链接
🌈点击关注=收获更多优质内容🌈
目录
题目:多重背包问题
题解:
代码实现:
优化:
代码实现:
题目:分组背包问题
题解:
代码实现:
完结撒花:
题目:多重背包问题
题解:
与完全背包问题不同的是,每种东西都是有限件,前两种状态就不再过多赘述,有疑问的uu们可以去看看这篇文章完全背包,第三种状态我们直接枚举即可:当能拿下k个物品时,与不拿k件物品去最大值。
代码实现:
#include<iostream>
#include<algorithm>
using namespace std;
const int N=1100;
int v[N],s[N],w[N],f[N][N];
int main()
{
int n=0,V=0;
cin>>n>>V;
for(int i=1;i<=n;i++)
{
cin>>v[i]>>w[i]>>s[i];
}
for(int i=1;i<=n;i++)
{
for(int j=1;j<=V;j++)
{
for(int k=0;k*v[i]<=j&&k<=s[i];k++)
f[i][j]=max(f[i][j],f[i-1][j-k*v[i]]+w[i]*k);
}
}
cout<<f[n][V];
}
优化:
这种做法虽然简单易懂,但时间复杂度为n^3,很容易就TLE了,所以我们必须优化一下。
这里有利用了一下快速幂(背增)的思想,不知道的uu们听我细说:
任何一个正整数都可以由二进制来表示(废话,那么我们要取得价值是不是也可以由二进制表示呢?
例如 我们有 1 2 4价值得东西,那我们就可以由这三个东西凑出0~7之间任何一个数
(由3个物品的表示凑出了7个情况),效率就高了
假设我们要凑0~9的任何一个数呢,那么1 2 4就无法表示了,我们可以给这区间加上一个2,是不是就可以表示0~9之间的任何一个情况了呢。
换到这题来看,数量为s的物品可以拆分为log s 个东西,就可以枚举出s个物品的情况,对应的价值乘上倍数k即可满足上面所说情况,所以对应的问题就变成了01背包问题
代码实现:
#include<iostream>
#include<algorithm>
using namespace std;
const int N=110000000;
int v[N],s[N],w[N],f[N][N];
int solution2()
{
int n=0,V=0;
cin>>n>>V;
int cnt=0;
int k=1;
for(int i=1;i<=n;i++)
{
int a=0,b=0,s=0;
cin>>a>>b>>s;
int k=1;
while(k<=s)
{
v[++cnt]=a*k;
w[cnt]=b*k;
s-=k;
k*=2;
}
if(s>0)
{
v[++cnt]=s*a;
w[cnt]=s*b;
}
}
n=cnt;
for(int i=1;i<=n;i++)
{
for(int j=V;j>=v[i];j--)
f[j]=max(f[j],f[j-v[i]]+w[i]);
}
cout<<f[V];
}
题目:分组背包问题
题解:
这题与完全背包问题也十分的相似,就是将一件物品无限拿,变成了一组物品挑一个。
代码实现:
#include<iostream>
#include<algorithm>
using namespace std;
const int N=110;
int v[N][N],w[N][N],s[N],f[N];
int main()
{
int n=0,m=0;
cin>>n>>m;
for(int i=1;i<=n;i++)
{
cin>>s[i];
for(int j=0;j<s[i];j++)
{
cin>>v[i][j];
cin>>w[i][j];
}
}
for(int i=1;i<=n;i++)
{
for(int j=m;j>=0;j--)
{
for(int k=0;k<s[i];k++)
{
if(j>=v[i][k])f[j]=max(f[j],f[j-v[i][k]]+w[i][k]);
}
}
}
cout<<f[m];
}
完结撒花:
🌈本篇博客的内容【动态规划:多重背包问题,分组背包问题】已经结束。
🌈若对你有些许帮助,可以点赞、关注、评论支持下博主,你的支持将是我前进路上最大的动力。
🌈若以上内容有任何问题,欢迎在评论区指出。若对以上内容有任何不解,都可私信评论询问。
🌈诸君,山顶见!