Golang 内存分配原理

news2025/1/7 6:44:58

引言

golang是谷歌2009年发布的开源编程语言,截止目前go的release版本已经到了1.12,Golang 语言专门针对多处理器系统应用程序的编程进行了优化,使用 Golang 编译的程序可以媲美 C /C++代码的速度,而且更加安全、支持并行进程。和其他“高级语言”一样,golang同样有一套自己的内存管理机制,自主的去完成内存分配、垃圾回收、内存管理等过程,从而避免频繁的向操作系统申请、释放内存,有效的提升go语言的处理性能。由于篇幅有限,本文重点针对golang1.12.6版本就内存分配情况进行一下梳理和讲解。golang的内存管理是基于tcmalloc模型设计,但又有些差异,局部缓存并不是分配给进程或者线程,而是分配给P(Processor);golang的GC是stop the world,并不是每个进程单独进行GC;golang语言对span的管理更有效率。

在进入正题之前,我们先回顾一下c语言内存是如何申请的,常用方式是调用malloc函数,指定要分配的大小,直接向操作系统申请,那我们来思考一下这种方式有没有什么问题?它会涉及到用户态和内核态的切换过程,那么频繁的进行用户态和内核态切换就会带来很大的耗时,导致性能下降,因此我们必须从语言层面找一种方式减少这么操作,那就是自己做一套内存管理机制。

就内存管理来说,如果要让我们去设计,思考一下都需要哪些功能模块才能保证高效稳定?

  • 内存池:要减少用户态和内核态的频繁切换就需要自己申请一块内存空间,将之分割成大小规格不同的内存块来供程序使用,内存池是再适合不过的组成部分了。
  • GC:内存管理不光需要使用方便,还要保证内存使用过程能够节约,毕竟整个系统的内存资源是有限的,那么就需要GC进行动态的垃圾回收,销毁无用的对象,释放内存来保证整个程序乃至系统运行平稳。
  • 锁:一个应用程序内部之间存在大量的线程,线程之间资源是共享的,那么要保证同一块内存使用过程不出现复用或者污染,就必须保证同一时间只能有一个线程进行申请,第一个想到的肯定是锁,对公共区域的资源一定要加锁,另一种方式就是内存隔离,这个在golang的mcache中会有体现。

下面我们进入正题,基于上面分析的问题对golang进行一下研究,看看golang到底怎么管理内存的。

基本概念

1.什么是span

首先我们来介绍一下span的概念,span是golang内存管理的基本单位,每个span管理指定规格(以page为单位)的内存块,内存池分配出不同规格的内存块就是通过span体现出来的,应用程序创建对象就是通过找到对应规格的span来存储的,下面我们看一下mspan的结构

go1.12.6\src\runtime\mheap.go
//go:notinheap
type mspan struct {
   next *mspan     //链表下一个span地址
   prev *mspan     // 链表前一个span地址
   list *mSpanList // 链表地址

   startAddr uintptr // 该span在arena区域的起始地址
   npages    uintptr // 该span占用arena区域page的数量

   manualFreeList gclinkptr // 空闲对象列表

   freeindex uintptr//freeindex是0到nelems之间的位置索引,标记下一个空对象索引
   
   nelems uintptr // 管理的对象数

   allocCache uint64   //从freeindex开始的位标记
   allocBits  *gcBits //该mspan中对象的位图
   gcmarkBits *gcBits //该mspan中标记的位图,用于垃圾回收
   sweepgen    uint32 //扫描计数值,用户与mheap的sweepgen比较,根据差值确定该span的扫描状态
 
   allocCount  uint16     // 已分配的对象的个数
   spanclass   spanClass  // span分类
   state       mSpanState // mspaninuse etc
   needzero    uint8      // 分配之前需要置零
  
   scavenged   bool       // 标记是否内存已经被系统回收,大对象会用到
   elemsize    uintptr    // 对象的大小
   unusedsince int64      // 空闲状态开始的纳秒值时间戳,用于系统内存释放
   limit       uintptr    // 申请大对象内存块会用到,mspan的数据截止位置
}

picture1

根据源码和上图结合来看,会更加容易理解mspan,每一个mspan就是用来给程序分配对象空间的,也就是说一般我们对象都会放到mspan中管理,这里我们重点解释一下如图所示的几个属性,startAddr 是该mspan在arena区域的首地址,freeindex 用来表示下一个可能是空对象的位置,也就是说freeindex之前的元素(存储对象的空间)均是已经被使用的,freeindex之后的元素可能被使用可能没被使用,allocCache是从freeindex开始对后续元素分配情况进行缓存标记,通过freeindex和allocCache结合进行查找未分配的元素位置效率会更高,我们能快速的找到一个空对象分配给程序使用,而不用全局遍历。allocBits用来标识该span中所有元素的使用分配情况,gcmarkBits 用来sweep过程进行标记垃圾对象的,用于后续gc。

2.怎么区分span

那么要想区分不同规格的span,我们必须要有一个标识,每个span通过splanclass标识属于哪种规格的span,golang的span规格一共有67种,具体查看go1.12.6\src\runtime\sizeclasses.go,可看到下图的规格表

// class  bytes/obj  bytes/span  objects  tail waste  max waste
//     1          8        8192     1024           0     87.50%
//     2         16        8192      512           0     43.75%
//     3         32        8192      256           0     46.88%
//     4         48        8192      170          32     31.52%
//     5         64        8192      128           0     23.44%
//     6         80        8192      102          32     19.07%
//     7         96        8192       85          32     15.95%
//     8        112        8192       73          16     13.56%
//     9        128        8192       64           0     11.72%
...
//省略部分规格,详细请看源文件
...
//    59      18432       73728        4           0     11.11%
//    60      19072       57344        3         128      3.57%
//    61      20480       40960        2           0      6.87%
//    62      21760       65536        3         256      6.25%
//    63      24576       24576        1           0     11.45%
//    64      27264       81920        3         128     10.00%
//    65      28672       57344        2           0      4.91%
//    66      32768       32768        1           0     12.50%

其中:

  • class: 分类id或者规格id,也就是spanclass, 表示该span可存储的对象规格类型
  • bytes/obj:该列代表能存储每个对象的字节数,也就是说可以存储多大的对象,字段是elemsize
  • bytes/span:每个span占用堆的字节数,也即页数页大小,npages8KB
  • objects: 每个span可分配的元素个数,或者说可存储的对象个数,也就是nelems,也即(bytes/spans)/(bytes/obj)
  • tail bytes: 每个span产生的内存碎片,也即(bytes/span)%(bytes/obj)
  • max waste:最大浪费比例,(bytes/obj-最小使用量)*objects/(bytes/span)*100,比如classId=2 最小使用量是9bytes,则max waste=(16-9)512/8192100=43.75%

通过上表,我们可以很清楚的知道在创建一个对象时候,需要去选哪一个splanclass的span去获取内存空间,一个span能存多少这样大小的对象等等信息,非常清晰而又尽可能节约的去使用内存。另外上表可见最大的对象是32KB大小,超过32KB大小的由特殊的class表示,该class ID为0,每个class只包含一个对象。所以上面只有列出了1-66。

内存管理组件

阐述完一些基本概念,我们可以知道对象是存在span中,大家肯定会疑惑那span放在哪,怎么把这些各种规格孤立的span串起来?下面我们来说一下golang的内存管理组件,内存分配是由内存分配器完成,分配器由3种组件构成:mcache、mcentral、mheap,我们来详细讲一下每个组件。

我们知道golang之所有有很强的并发能力,依赖于它的G-P-M并发模型。

G-P-M并发模型
G:表示Goroutine,也就是我们说的协程,由P进行调度。
P:是 G-M 的中间层,是逻辑处理器,每一个P组织多个 goroutine 跑在同一个 OS 线程上。
M:是对内核级线程的封装,真正干活的对象。
P作为协调器将G队列动态的绑在不同的M上,根据负载情况动态调整,从而均衡的发挥出多核最大并行处理计算能力

1.mcache

mcache就绑在并发模型的P上,也就是说我们每一个P都会有一个mcahe绑定,用来给协程分配对象存储空间的。下面具体看一下mcache的结构

go1.12.6\src\runtime\mcache.go
//go:notinheap
type mcache struct { 
   
   tiny             uintptr //<16byte 申请小对象的起始地址
   tinyoffset       uintptr //从起始地址tiny开始的偏移量
   local_tinyallocs uintptr //tiny对象分配的数量   

   alloc [numSpanClasses]*mspan // 分配的mspan list,其中numSpanClasses=134,索引是splanclassId

   stackcache [_NumStackOrders]stackfreelist //栈缓存

  
   local_largefree  uintptr                  // 大对象释放字节数
   local_nlargefree uintptr                  // 释放的大对象数量
   local_nsmallfree [_NumSizeClasses]uintptr // 每种规格小对象释放的个数

 
   flushGen uint32 //扫描计数
}

可以看到在mcache结构体中并没有锁存在,这是因为每个P都会绑定一个mcache,而每个P同时只会处理一个groutine,而且不同P之间是内存隔离的,因此不存在竞争情况。关键字段都已经在代码中解释了,这里我们重点关注一下 alloc [numSpanClasses]*mspan,由于SpanClasses一共有67种,为了满足指针对象和非指针对象,这里为每种规格的span同时准备scan和noscan两个,因此一共有134个mspan缓存链表,分别用于存储指针对象和非指针对象,这样对非指针对象扫描的时候不需要继续扫描它是否引用其他对象,GC扫描对象的时候对于noscan的span可以不去查看bitmap区域来标记子对象, 这样可以大幅提升标记的效率。另外mcache在初始化时是没有任何mspan资源的,在使用过程中会动态地申请,不断的去填充 alloc[numSpanClasses]*mspan,通过双向链表连接,如下图所示:
picture2

通过图示我们可以看到alloc[numSpanClasses]*mspan管理了很多不同规格不同类型的span,golang对于[16B,32KB]的对象会使用这部分span进行内存分配,所以所有在这区间大小的对象都会从alloc这个数组里寻找,看下源码:

var sizeclass uint8
//确定规格
if size <= smallSizeMax-8 {
   sizeclass = size_to_class8[(size+smallSizeDiv-1)/smallSizeDiv]
} else {
   sizeclass = size_to_class128[(size-smallSizeMax+largeSizeDiv-1)/largeSizeDiv]
}
size = uintptr(class_to_size[sizeclass])
spc := makeSpanClass(sizeclass, noscan)
//alloc中查到
span := c.alloc[spc]

而对于更小的对象,我们叫它tiny对象,golang会通过tiny和tinyoffset组合寻找位置分配内存空间,这样可以更好的节约空间。源码如下:

off := c.tinyoffset
//根据不同大小内存对齐
if size&7 == 0 {
   off = round(off, 8)
} else if size&3 == 0 {
   off = round(off, 4)
} else if size&1 == 0 {
   off = round(off, 2)
}
if off+size <= maxTinySize && c.tiny != 0 {
   // tiny+偏移量
   x = unsafe.Pointer(c.tiny + off)
   c.tinyoffset = off + size
   c.local_tinyallocs++
   mp.mallocing = 0
   releasem(mp)
   return x
}
// 空间不足从alloc重新申请空间用于tiny对象分配
span := c.alloc[tinySpanClass]

2.mcentral

刚才我们提到mcache中的mspan都是动态申请的,那到底是去哪里申请呢?其实当空间不足的时候,mcache会去mcentral中申请对应规格的mspan,我们来继续看一下mcentral,先来看一下结构:

go1.12.6\src\runtime\mcentral.go
//go:notinheap
type mcentral struct {
   lock      mutex
   spanclass spanClass   //spanClass Id
   nonempty  mSpanList // 空闲的span列表
   empty     mSpanList // 已经被使用的span列表

   nmalloc uint64 //这个mcentral分配mspan的累积计数
}

看到mcentral的结构体会觉得很简单,首先与mcache有一个明显区别,就是有锁存在,由于mcentral是公共资源,会有多个mcache向它申请mspan,因此必须加锁,另外,mcentral与mcache不同,由于P绑定了很多Goroutine,在P上会处理不同大小的对象,mcache就需要包含各种规格的mspan,但mcentral不同,同一个mcentral只负责一种规格的mspan就够了,mcache就像一个市政府,mcentral就像国家部委,市政府需要管管辖区域内的所有方面的事情,而每个部委很专一,只管一方面,市政府需要哪方面资源,就去和对应部委对接就可以了。mcentral也是用spanclass 进行标记规格类型,该规格的所有未被使用的空闲mspan会挂载到nonempty 链表上,已经被mcache拿走,未归还的会挂载到empty 链表上,归还后会再挂载到nonempty上,用图表示如下,以规格sizeClass=1为例:
picture3

每一个mSpanList都挂着同一规格mspan双向链表,当然这个链表也不是固定大小的,都会动态变化的。

3.mheap

mcentral的nonempty也有用完的时候,当nonempty为空,再被申请的时候,也就是mcentral空间不足了,那么它会向mheap申请新的页,下面我们看一下mheap结构。

go1.12.6\src\runtime\mheap.go
//go:notinheap
type mheap struct {
   lock      mutex
   free      mTreap // 空闲的并且没被os收回的二叉树堆,大对象用
   scav      mTreap // 空闲的并且已经被os收回的二叉树堆,大对象用
   sweepgen  uint32 // 扫描计数值,每次gc后会自增2
   sweepdone uint32 // 扫描状态,用于判断是否可以进行一次扫描
   sweepers  uint32 // number of active sweepone calls

   allspans []*mspan // 所有的spans


   //sweepSpans的长度是2,sweepSpans[h.sweepgen/2%2]保存当前正在使用的span列表
   //sweepSpans[1-h.sweepgen/2%2]保存等待sweep的span列表,由于sweepgen每次gc+2,因此
   //sweepSpans [0],sweepSpans [1]每次身份互相交换
   sweepSpans [2]gcSweepBuf

   _ uint32 // align uint64 fields on 32-bit for atomics

 
   pagesInUse         uint64  // 有多少页正在被使用
   pagesSwept         uint64  // 扫描的页面数量
   pagesSweptBasis    uint64  // 用做扫描比例的初始基点
   sweepHeapLiveBasis uint64  // 用做扫描比例的初始处于存活状态的初始基点
   sweepPagesPerByte  float64 //扫描比 
  

   //是一个全局page页要被回收的位置,通过它/单个heapArena的总页数可以判断出是第几个heapArena
   //通过它%单个heapArena总page数,可以确定在这个heapArena的位置
   reclaimIndex uint64 
   
   reclaimCredit uintptr //多归还的pages,是回收对象在heapArena释放的   
   scavengeCredit uintptr //多回收给os的字节,下次回收可先扣减这个值,不足再回收真正的空间

   // Malloc stats.
   largealloc  uint64                  // 大对象分配的字节数
   nlargealloc uint64                  // 大对象分配的数量
   largefree   uint64                  // 大对象释放的字节数
   nlargefree  uint64                  // 大对象释放的数量
   nsmallfree  [_NumSizeClasses]uint64 // 小对象释放的数量

  
   arenas [1 << arenaL1Bits]*[1 << arenaL2Bits]*heapArena//arenas数组集合,管理各个heapArena

   
   allArenas []arenaIdx //所有arena序号集合,可以根据arenaIdx算出对应arenas中的哪一个heapArena
   
   sweepArenas []arenaIdx //扫描周期开始时allArenas的一个快照   

   //各个规格的mcentral集合
   central [numSpanClasses]struct {
      mcentral mcentral
      pad      [cpu.CacheLinePadSize - unsafe.Sizeof(mcentral{})%cpu.CacheLinePadSize]byte
   }

   spanalloc             fixalloc // span*的内存分配器(只是分配空结构)
   cachealloc            fixalloc // mcache*的内存分配器
   treapalloc            fixalloc // treapNodes*的内存分配器
   specialfinalizeralloc fixalloc // specialfinalizer*的内存分配器
   specialprofilealloc   fixalloc // specialprofile*的内存分配器
   speciallock           mutex    // lock for special record allocators.
   arenaHintAlloc        fixalloc // allocator for arenaHints

  
}

通过看这个结构,可以感觉到mheap相对复杂一些,重要字段我已经在代码中注释,我们知道每个golang程序启动时候会向操作系统申请一块虚拟内存空间,仅仅是虚拟内存空间,真正需要的时候才会发生缺页中断,向系统申请真正的物理空间,在golang1.11版本以后,申请的内存空间会放在一个heapArena数组里,由arenas [1 << arenaL1Bits]*[1 << arenaL2Bits]*heapArena表示,用于应用程序内存分配,下面展示一下数组中一块heapArena虚拟内存空间区域分配,
picture5

分为三个区域,分别是:

  • spans区域:存放span指针地址的地方,每个指针大小是8Byte
  • bitmap区域:用于标记arena区域中哪些地址保存了对象, 并且对象中哪些地址包含了指针,主要用于GC
  • arena区域:heap区域,程序内存分配的地方,管理的最小基本单位是页,golang一个page的大小是:8KB

下面看一下每个区域的大小情况
heapArena结构体如下:

type heapArena struct {   
   bitmap [heapArenaBitmapBytes]byte  
   spans [pagesPerArena]*mspan   
   pageInUse [pagesPerArena / 8]uint8   
   pageMarks [pagesPerArena / 8]uint8
}

关键字段计算定义如下:

heapArenaBytes = 1 << logHeapArenaBytes

logHeapArenaBytes = (6+20)*(_64bit*(1-sys.GoosWindows)*(1-sys.GoosAix))
 + (2+20)*(_64bit*sys.GoosWindows) + (2+20)*(1-_64bit) + (8+20)*sys.GoosAix

// heapArenaBitmapBytes is the size of each heap arena's bitmap.
heapArenaBitmapBytes = heapArenaBytes / (sys.PtrSize * 8 / 2)

pagesPerArena = heapArenaBytes / pageSize

通过源码可以看出spans大小等于arenaSize/8KB,可以理解为有多少page就准备出对应数量的“地址格子”,来充分保证能存下所有的span地址。

对于bitmap区域,由于bitmap是用来标记每个地址空间的使用情况,我们知道指针大小是8Byte,因此需要arenaSize/8个,一个bitmap可以标记四个地址,因此再除4。
picture6

如上图所示,是bitmap区域一个字节对arena区域的标记情况情况,高四位标记四个内存地址使用情况,低四位标记存储的是否是指针。对于arenaSize,根据源码公式,在64位非windows系统分配大小是64MB,windows 64位是4MB。

介绍完三个区域,我们再来看一下central [numSpanClasses],它就是管理的所有规格mcentral的集合,同样是134种,pad对齐填充用于确保 mcentrals 以 CacheLineSize 个字节数分隔,所以每一个 MCentral.lock 都可以获取自己的缓存行。而fixalloc类型的相关成员都是用来分配span、mache等对象的内存分配器,这里大家不要搞晕,具体来讲,以span举例,每一个span也需要空间存储,这个就是在spanalloc这个二叉树堆上存储,拿到这个对象,将startAddr 指向arena区域内的npages的内存空间才是给mcache使用的,或者说给P进行对象分配的。另外,由于mheap也是公共资源,一定也要有锁的存在。
下面结合图看一下:
picture7

从上图可以更清楚的看到,一个mheap会有134种mcentral,而每一种规格的mcentral会挂载该规格的mspan链表。

前面我们讲过tiny对象和小对象的内存分配,那大于 32KB 的对象怎么办呢?golang将大于32KB的对象定义为大对象,直接通过 mheap 分配。这些大对象的申请是以一个全局锁为代价的,所以同时只能服务一个P申请,大对象内存分配一定是页(8KB)的整数倍。结合源码再看一下:

func largeAlloc(size uintptr, needzero bool, noscan bool) *mspan {
    if size+_PageSize < size {
      throw("out of memory")
   }
   //页的整数倍
   npages := size >> _PageShift
   if size&_PageMask != 0 {
      npages++
   }  
   deductSweepCredit(npages*_PageSize, npages)
   //创建spanclass=0的mspan,从mheap开辟页空间
   s := mheap_.alloc(npages, makeSpanClass(0, noscan), true, needzero)
   if s == nil {
      throw("out of memory")
   }
   s.limit = s.base() + size
   heapBitsForAddr(s.base()).initSpan(s)
   return s
}

可以看出不管多大对象,一切的空间都是从mheap获取的,那mheap要是不足了呢?就只能向操作系统申请了。

内存分配规则

讲完内存管理组件,我们再来总结一下内存分配规则:

  • tiny对象内存分配,直接向mcache的tiny对象分配器申请,如果空间不足,则向mcache的tinySpanClass规格的span链表申请,如果没有,则向mcentral申请对应规格mspan,依旧没有,则向mheap申请,最后都用光则向操作系统申请。
  • 小对象内存分配,先向本线程mcache申请,发现mspan没有空闲的空间,向mcentral申请对应规格的mspan,如果mcentral对应规格没有,向mheap申请对应页初始化新的mspan,如果也没有,则向操作系统申请,分配页。
  • 大对象内存分配,直接向mheap申请spanclass=0,如果没有则向操作系统申请。

流程图如下:
picture8

部分内存申请源码源码如下:
mcache向mcentral申请,调用go1.12.6\src\runtime\mcache.go refill方法

func (c *mcache) refill(spc spanClass) {
   // 返回当前的mspan.
   s := c.alloc[spc]
    //判断是否所有元素都配分配了 
   if uintptr(s.allocCount) != s.nelems {
      throw("refill of span with free space remaining")
   }
   if s != &emptymspan {
      // Mark this span as no longer cached.
      if s.sweepgen != mheap_.sweepgen+3 {
         throw("bad sweepgen in refill")
      }
      atomic.Store(&s.sweepgen, mheap_.sweepgen)
   }

   // 向mheap同规格的mcentral申请mspan
   s = mheap_.central[spc].mcentral.cacheSpan()
   if s == nil {
      throw("out of memory")
   }

   if uintptr(s.allocCount) == s.nelems {
      throw("span has no free space")
   }
   
   s.sweepgen = mheap_.sweepgen + 3

   c.alloc[spc] = s
}

mcentral空间不足,向mheap申请分配页创建新的mspan,调用go1.12.6\src\runtime\mcental.go grow方法

func (c *mcentral) grow() *mspan {
   npages := uintptr(class_to_allocnpages[c.spanclass.sizeclass()])
   size := uintptr(class_to_size[c.spanclass.sizeclass()])
   n := (npages << _PageShift) / size
   //mheap管理的是page
   s := mheap_.alloc(npages, c.spanclass, false, true)
   if s == nil {
      return nil
   }

   p := s.base()
   s.limit = p + size*n
   //初始化mspan各变量默认值
   heapBitsForAddr(s.base()).initSpan(s)
   return s
}

mheap空间不足会调用go1.12.6\src\runtime\mheap.go grow方法进行系统申请

func (h *mheap) grow(npage uintptr) bool {
    //左移8KB,获取空间大小
   ask := npage << _PageShift
   //系统调用
   v, size := h.sysAlloc(ask)
   if v == nil {
      print("runtime: out of memory: cannot allocate ", ask, "-byte block (", memstats.heap_sys, " in use)\n")
      return false
   }

   //将heap.free二叉树堆里面释放一些无用对象的页pages,平衡一下新申请的空间
   h.scavengeLargest(size)

   //创建一个mspan进行管理使其处于free以至右侧临近span能够发生合并
   s := (*mspan)(h.spanalloc.alloc())
   s.init(uintptr(v), size/pageSize)
   h.setSpans(s.base(), s.npages, s)
   //span的sweepgen = 全局sweepgen,代表已经被sweep过,防止被gc回收
   atomic.Store(&s.sweepgen, h.sweepgen)
    // 设置新span处于在用状态,防止被回收
   s.state = mSpanInUse
   h.pagesInUse += uint64(s.npages)
   //进行合并
   h.freeSpanLocked(s, false, true, 0)
   return true

gc改进

通过上节流程图和代码,我们可以清晰的知道一个对象内存申请的整个过程,那思考一下这个流程是否完善,我们都知道golang通过gc进行垃圾回收,而完整的gc需要两次stop the world,如果我们完全依赖gc去垃圾回收是不是影响整个程序的性能,我们假设一个场景,mcentral的span一直不够用,那会不断的去向mheap去申请page空间,导致mheap的使用率很快就触发到gc的阈值,启动gc处理过程,频繁的gc就会导致频繁的程序停服,极大的会影响程序服务性能,那golang的做法是怎么样的呢?,在1.12版本里面golang对mheap结构添加了reclaimCredit 成员变量,每次mcentral向mheap申请新的page空间创建span的时候,都会先去扫描arenas里面的heapArena,去清理垃圾对象回收相同page数量的空间,由于扫描到的垃圾对象不可能正好等于相同page,多清理的page大小就会存到到reclaimCredit里面,下一次再扫描arenas的时候会先去抵消reclaimCredit,如果不够才会去扫描heapArena。通过这种方式有效的防止mheap使用率过快增长,下面是整个流程图:
picture8

同理,我们知道当mheap不够用的时候,会去向操作系统申请内存空间,如果增长过快,也会造成整个操作系统的不稳定,golang对这部分也做了处理,1.12版本mheap引入scavengeCredit 这个成员变量,当向操作系统申请内存空间的时候,会先去扫描free这个二叉树堆,span从大到小的扫描,释放所需大小的空间给os,多余释放的到小会存储到scavengeCredit中,下次再次扫描的时候会先扣除这个值。下面是整个流程图:
picture9

结尾

到此也就基本讲完了golang的内存分配的整个环节,本文也是受php内存管理启发,进行了一下golang源码深入研究,由于篇幅关系并没有把源码中的各种细节进行详细讲解,仅对整体流程进行梳理和阐述,对关键源码进行注释和解释,希望能给对golang感兴趣的伙伴给予一定帮助,如需更具体的了解,可以根据这个大流程进行源码学习。本人也是基于1.12.6版本源码一点点梳理出来的,不足之处还请各位不吝雅正。

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.coloradmin.cn/o/401342.html

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈,一经查实,立即删除!

相关文章

机器学习学习记录2:归纳偏好(奥卡姆剃刀原则和NFL定理)

定义对于相同的训练样本&#xff0c;不同学习算法会产生不同的模型&#xff0c;决定其产生模型的&#xff0c;是学习算法本身的“偏好”。此处&#xff0c;书中引入“归纳偏好”的概念&#xff1a;机器学习算法在学习过程中对某种类型假设的偏好&#xff0c;称为"归纳偏好…

CMake编译学习笔记

CMake学习笔记CMake编译概述CMake学习资源CMake编译项目架构cmake指令CMakeList基础准则CMakeList编写项目构建cmake_minimum_required() 和 project()set()find_package()add_executable()aux_source_directory()连接库文件include_directories()和target_include_directories…

1.4 数值运输商中应注意的几个原则

在数值运算中&#xff0c;每步都可能产生误差&#xff0c;我们不可能(也不必要)步步进行分析&#xff0e;下面仅从误差的某些传播规律和计算机字长有限的特点出发,指出在数值运算中必须注意的几个原则&#xff0c;以提高计算结果的可靠性1. 选用数值稳定性好的算法计算机虽然具…

MySQL Show Profile分析

6 Show Profile分析&#xff08;重点&#xff09; Show Profile是mysql提供可以用来分析当前会话中语句执行的资源消耗情况。可以用于SQL的调优的测量 官网文档 默认情况下&#xff0c;参数处于关闭状态&#xff0c;并保存最近15次的运行结果 分析步骤&#xff1a; 1、是否…

Flask+VUE前后端分离的登入注册系统实现

首先Pycharm创建一个Flask项目&#xff1a; Flask连接数据库需要下载的包&#xff1a; pip install -U flask-cors pip install flask-sqlalchemy Flask 连接和操作Mysql数据库 - 王滚滚啊 - 博客园 (cnblogs.com) sqlAlchemy基本使用 - 简书 (jianshu.com) FlaskVue前后端分…

最新研究!美国爱荷华州立大学利用量子计算模拟原子核

爱荷华州立大学物理学和天文学教授James Vary&#xff08;图片来源&#xff1a;网络&#xff09;美国爱荷华州立大学物理学和天文学教授James Vary和来自爱荷华州立大学、马萨诸塞州塔夫茨大学&#xff0c;以及美国能源部加利福尼亚州劳伦斯伯克利国家实验室的研究人员&#xf…

basic1.0链码部署(基于test-network 环境ubuntu20.04腾讯云)

解决了官方示例指令需要科学上网才能运行的问题&#xff08;通过手动下载二进制文件和拉取官方fabric-samples&#xff09;。具体的将bootstrap.sh脚本解读了一遍 具体可以参照我的博客 fabric中bootstrap.sh到底帮助我们干了什么&#xff1f;&#xff08;curl -sSL https://bi…

PACS(CT、CR、DR、MR、DSA、RF医院影像管理系统源码)

PACS具体功能介绍&#xff1a; 病人、采集、观片、三维、报告、照相、退出、文件、图像采集、观片操作、三维、测量标注、诊断报告、照相打印、统计报表、系统管理、帮助、病人浏览器、选择数据源、打开图像、病人登记、工作列表、采集、打开画廊。 DICOM查询/获取&#xff1a…

应用层

应用层 是计算机网络体系的最顶层,是设计和建立计算机网络的最终目的,也是计算机网络中发展的最快的部分 开发一种新的网络应用首先考虑的问题就是网络应用程序在各种端系统上的组织方式和它们之间的关系 客户/服务器方式(C/S方式) 客户是服务请求方,服务器是服务提供方 服务…

【2023-03-10】JS逆向之美团滑块

提示&#xff1a;文章仅供参考&#xff0c;禁止用于非法途径 前言 目标网站:aHR0cHM6Ly9wYXNzcG9ydC5tZWl0dWFuLmNvbS9hY2NvdW50L3VuaXRpdmVsb2dpbg 页面分析 接口流程 1.https://passport.meituan.com/account/unitivelogin主页接口&#xff1a;需获取下面的参数&#xff0…

Intel 处理器 macOS降级到Big Sur

1 创建可引导的 macOS 安装器 将移动硬盘作安装 Mac 操作系统的启动磁盘。 创建可引导安装器需要满足的条件 移动硬盘&#xff08;格式化为 Mac OS 扩展格式&#xff09;&#xff0c;至少有 14GB 可用空间已下载 macOS Big Sur的安装器 2 下载 macOS macOS Big Sur安装器会…

分享一个OJ平台——浙江工商大学的OJ平台

1.引言 最近是有总喜欢讨论算法题&#xff0c;因为他们在准备考研复试&#xff0c;为什么我不准备呢&#xff1f;这是一个悲伤的故事&#xff0c;刚好自己也有面试遇到只能使用C和C的代码题&#xff0c;他们说这OJ平台相对简单一些&#xff0c;那些刷不来LeetCode可以试试这个&…

【数据分析:工具篇】NumPy(1)NumPy介绍

【数据分析&#xff1a;工具篇】NumPy&#xff08;1&#xff09;NumPy介绍NumPy介绍NumPy的特点数组的基本操作创建数组索引和切片数组运算NumPy介绍 NumPy&#xff08;Numerical Python&#xff09;是Python的一个开源的科学计算库&#xff0c;它主要用于处理大规模的多维数组…

linux安装mysql-8.0.31

1)、下载mysql-8.0.31压缩包两种方式 a.本地下载后上传服务器解压&#xff0c;下载地址&#xff1a;https://downloads.mysql.com/archives/community/ b.服务器使用命令下载&#xff0c;注意&#xff1a;路径在那&#xff0c;就下载到那个位置。 wget https://dev.mysql.com/…

解Bug之路-Nginx 502 Bad Gateway

前言 事实证明&#xff0c;读过Linux内核源码确实有很大的好处&#xff0c;尤其在处理问题的时刻。当你看到报错的那一瞬间&#xff0c;就能把现象/原因/以及解决方案一股脑的在脑中闪现。甚至一些边边角角的现象都能很快的反应过来是为何。笔者读过一些Linux TCP协议栈的源码…

宁盾目录成功对接Coremail邮箱,为其提供LDAP统一认证和双因子认证

近日&#xff0c;宁盾与 Coremail 完成兼容适配&#xff0c;在 LDAP 目录用户同步、统一身份认证及双因子认证等模块成功对接。借此机会&#xff0c;双方将加深在产品、解决方案等多个领域的合作&#xff0c;携手共建信创合作生态&#xff0c;打造信创 LDAP 身份目录服务新样本…

第15章 局部波动率的影响

这学期会时不时更新一下伊曼纽尔德曼&#xff08;Emanuel Derman&#xff09; 教授与迈克尔B.米勒&#xff08;Michael B. Miller&#xff09;的《The Volatility Smile》这本书&#xff0c;本意是协助导师课程需要&#xff0c;发在这里有意的朋友们可以学习一下&#xff0c;思…

Java基础-2023.3.08-Java入门

Java入门 1.人机交互 CMD&#xff08;K1-K5&#xff09; 1.CMD&#xff1a; 1&#xff09;在Windows中&#xff0c;利用命令行的方式操作计算机 2&#xff09;可以打开文件&#xff0c;打开文件夹&#xff0c;创建文件夹等 注&#xff1a; 2.打开CMD …

GEE学习01--配置Python与Jupyter Notebook

1、查看自己电脑有哪些Python 首先&#xff0c;使用Arcgis Pro克隆了Python&#xff0c;原先的Pro自带和clone的Python都要确保在系统变量中设置了Path。 这里可以看到有一个WindowsApps&#xff0c;在Path中要将其至于自己的Python下面&#xff0c;否则的话&#xff0c;在Cm…

JavaScript语法

文章目录一、JavaScript是什么&#xff1f;JavaScript引入方式二、基础语法书写语法输出语句变量数据类型运算符流程控制语句数组函数JS变量作用域对象一、JavaScript是什么&#xff1f; JavaScript&#xff1a;是一门跨平台的脚本语言&#xff0c;用来控制网页行为&#xff0…