《SQL基础》17. InnoDB引擎

news2024/10/2 20:25:23

InnoDB引擎

  • InnoDB引擎
    • 逻辑存储结构
    • 架构
      • 内存结构
      • 磁盘结构
      • 后台线程
    • 事务原理
      • 事务基础
      • redo log
      • undo log
    • MVCC
      • 基本概念
      • 隐式字段
      • undo log版本链
      • readView
      • 原理分析


InnoDB引擎

逻辑存储结构

InnoDB的逻辑存储结构如下图所示:

在这里插入图片描述

  • 表空间
    表空间是InnoDB存储引擎逻辑结构的最高层,如果用户启用了参数 innodb_file_per_table(在8.0版本中默认开启),则每张表都会有一个表空间(xxx.ibd),一个mysql实例可以对应多个表空间,用于存储记录、索引等数据。


  • 段,分为数据段(Leaf node segment)、索引段(Non-leaf node segment)、回滚段(Rollback segment),InnoDB是索引组织表,数据段就是B+树的叶子节点,索引段即为B+树的非叶子节点。段用来管理多个Extent(区)。


  • 区,表空间的单元结构,每个区的大小为1M。默认情况下,InnoDB存储引擎页大小为16K,即一个区中一共有64个连续的页。


  • 页,是InnoDB存储引擎磁盘管理的最小单元,每个页的大小默认为16KB。为了保证页的连续性,InnoDB存储引擎每次从磁盘申请 4-5 个区。


  • 行,InnoDB存储引擎数据是按行进行存放的。在行中,默认有两个隐藏字段

    • Trx_id:每次对某条记录进行改动时,都会把对应的事务id赋值给trx_id隐藏列。
    • Roll_pointer:每次对某条引记录进行改动时,都会把旧的版本写入到undo日志中,然后这个隐藏列就相当于一个指针,可以通过它来找到该记录修改前的信息。

架构

MySQL5.5版本开始,默认使用InnoDB存储引擎,它擅长事务处理,具有崩溃恢复特性,在日常开发中使用非常广泛。下面是InnoDB架构图,左侧为内存结构,右侧为磁盘结构

请添加图片描述

内存结构

在左侧的内存结构中,主要分为四大块:

  • Buffer Pool(缓冲池)
  • Change Buffer(更改缓冲区)
  • Adaptive Hash Index(自适应hash索引)
  • Log Buffer(日志缓冲区)

请添加图片描述

Buffer Pool

Buffer Pool(缓冲池),是主内存中的一个区域,里面可以缓存磁盘上经常操作的真实数据,在执行增删改查操作时,先操作缓冲池中的数据(若缓冲池没有数据,则从磁盘加载并缓存),然后再以一定频率刷新到磁盘,从而减少磁盘IO,加快处理速度。

缓冲池以Page(页)为单位,底层采用链表数据结构管理Page。根据状态,将Page分为三种类型:

  • free page:空闲页,未被使用。
  • clean page:被使用页,且数据没有被修改过。
  • dirty page:脏页,被使用页,且数据被修改过,页中数据与磁盘的数据不一致。

在专用服务器上,通常将多达80%的物理内存分配给缓冲池。

缓冲池大小查询
SHOW VARIABLES LIKE 'innodb_buffer_pool_size';

Change Buffer

Change Buffer(更改缓冲区),针对于非唯一二级索引页,在执行DML语句时,如果这些数据Page没有在Buffer Pool中,不会直接操作磁盘,而会将数据变更存在Change Buffer中,在未来数据被读取时,再将数据合并恢复到Buffer Pool中,将合并后的数据刷新到磁盘中。

Change Buffer的意义
与聚集索引不同,二级索引通常是非唯一的,并且以相对随机的顺序插入二级索引。同样,删除和更新可能会影响索引树中不相邻的二级索引页,如果每一次都操作磁盘,会造成大量的磁盘IO。有了ChangeBuffer之后,可以在缓冲池中进行合并处理,减少磁盘IO。

Adaptive Hash Index

Adaptive Hash Index(自适应hash索引),用于优化对Buffer Pool数据的查询。MySQL的innoDB引擎中虽然没有直接支持hash索引,但是提供了自适应hash索引。InnoDB存储引擎会监控对表上各索引页的查询,如果观察到在特定的条件下hash索引可以提升速度,则建立hash索引,称之为自适应hash索引。

自适应哈希索引,无需人工干预,是系统根据情况自动完成的

参数:adaptive_hash_index

Log Buffer

Log Buffer(日志缓冲区),用来保存要写入到磁盘中的log日志数据(redo log 、undo log),默认大小为16MB,日志缓冲区的日志会定期刷新到磁盘中。如果需要更新、插入或删除许多行的事务,增加日志缓冲区的大小可以节省磁盘I/O。

参数:
innodb_log_buffer_size:缓冲区大小。

innodb_flush_log_at_trx_commit:日志刷新到磁盘时机。取值主要包含以下三个:

  • 1:日志在每次事务提交时写入并刷新到磁盘,默认值。
  • 0:每秒将日志写入并刷新到磁盘一次。
  • 2:日志在每次事务提交后写入,并每秒刷新到磁盘一次。

磁盘结构

InnoDB体系结构的右边部分,也就是磁盘结构:

  • System Tablespace(系统表空间)
  • File-Per-Table Tablespaces(独立表空间)
  • General Tablespaces(通用表空间)
  • Undo Tablespaces(撤销表空间)
  • Temporary Tablespaces(临时表空间)
  • Doublewrite Buffer Files(双写缓冲区)
  • Redo Log(重做日志)

在这里插入图片描述

System Tablespace

系统表空间是更改缓冲区的存储区域。如果表是在系统表空间而不是每个表文件或通用表空间中创建的,它也可能包含表和索引数据。(在MySQL5.x版本中还包含InnoDB数据字典、undolog等)
参数:innodb_data_file_path

系统表空间,默认的文件名叫 ibdata1。

File-Per-Table Tablespaces

如果开启了 innodb_file_per_table 开关,则每个表的文件表空间包含单个InnoDB表的数据和索引 ,并存储在文件系统上的单个数据文件中。也就是说,每创建一个表,都会产生一个表空间文件。

开关参数:innodb_file_per_table,该参数默认开启。

General Tablespaces

通用表空间,需要通过 CREATE TABLESPACE 语法创建通用表空间,在创建表时,可以指定该表空间。

创建表空间
CREATE TABLESPACE 表空间名 ADD DATAFILE '关联的表空间文件' ENGINE = 存储引擎名;

表空间文件即(xxx.ibd)

创建表时指定表空间
CREATE TABLE 表名(创建字段列表) TABLESPACE 表空间名;

Undo Tablespaces
撤销表空间,MySQL实例在初始化时会自动创建两个默认的undo表空间(初始大小16M),用于存储undo log日志。

Temporary Tablespaces

InnoDB使用会话临时表空间全局临时表空间。存储用户创建的临时表等数据。

Doublewrite Buffer Files

双写缓冲区,innoDB引擎将数据页从Buffer Pool刷新到磁盘前,先将数据页写入双写缓冲区文件中,便于系统异常时恢复数据。

Redo Log

重做日志,是用来实现事务的持久性。该日志文件由两部分组成:重做日志缓冲(redo log buffer)以及重做日志文件(redo log file),前者是在内存中,后者在磁盘中。当事务提交之后会把所有修改信息存到该日志中,用于在刷新脏页到磁盘发生错误时,进行数据恢复使用。

重做日志文件以循环方式写入,涉及两个文件。

后台线程

内存中所更新的数据,存到磁盘中,涉及到后台线程。

在InnoDB的后台线程中,分为4类

  • Master Thread
  • IO Thread
  • Purge Thread
  • Page Cleaner Thread

Master Thread

核心后台线程,负责调度其他线程,还负责将缓冲池中的数据异步刷新到磁盘中,保持数据的一致性,还包括脏页的刷新、合并插入缓存、undo页的回收。

IO Thread

在InnoDB存储引擎中大量使用了AIO来处理IO请求,这样可以极大地提高数据库的性能,而IO Thread主要负责这些IO请求的回调。

线程类型默认个数职责
Read thread4负责读操作
Write thread4负责写操作
Log thread1负责将日志缓冲区刷新到磁盘
Insert buffer thread1负责将写缓冲区内容刷新到磁盘

查看InnoDB状态信息
SHOW ENGINE INNODB STATUS \G;

Purge Thread

主要用于回收事务已经提交了的undo log,在事务提交之后,undo log可能不用了,就用它来回收。

Page Cleaner Thread

协助 Master Thread 刷新脏页到磁盘的线程,它可以减轻 Master Thread 的工作压力,减少阻塞。

事务原理

事务基础

事务是一组操作的集合,它是一个不可分割的工作单位。事务会把所有的操作作为一个整体一起向系统提交或撤销操作请求,即这些操作要么同时成功,要么同时失败。

事务特性

  • 原子性(Atomicity):事务是不可分割的最小操作单元,要么全部成功,要么全部失败。
  • 一致性(Consistency):事务完成时,必须使所有的数据都保持一致状态。
  • 隔离性(Isolation):数据库系统提供的隔离机制,保证事务在不受外部并发操作影响的独立环境下运行。
  • 持久性(Durability):事务一旦提交或回滚,它对数据库中的数据的改变就是永久的。

在这里插入图片描述
其中的原子性、一致性、持久性,实际上是由InnoDB中的两份日志来保证的,一份是redo log日志,一份是undo log日志。 而持久性是通过数据库的,加上MVCC来保证的。

redo log

redo log(重做日志),记录的是事务提交时数据页的物理修改,是用来实现事务的持久性。
该日志文件由两部分组成:重做日志缓冲(redo log buffer)以及重做日志文件(redo log file),前者是在内存中,后者在磁盘中。当事务提交之后会把所有修改信息存到该日志中,用于在刷新脏页到磁盘发生错误时,进行数据恢复使用。

在这里插入图片描述

当对缓冲区的数据进行增删改之后,会首先将操作的数据页的变化记录在redo log buffer中。在事务提交时,会将redo log buffer中的数据刷新到redo log磁盘文件中。过一段时间之后,如果刷新缓冲区的脏页到磁盘时,发生错误,此时就可以借助redo log进行数据恢复,这样就保证了事务的持久性。 而如果脏页成功刷新到磁盘 或 涉及到的数据已经落盘,此时redo log就没有作用了,可以删除,所以存在的两个redolog文件是循环写的。

为什么每一次提交事务,要刷新 redo log 到磁盘中,而不是直接将 buffer pool 中的脏页刷新到磁盘?
因为在业务操作中,操作数据一般都是随机读写磁盘,而不是顺序读写磁盘。而redo log在往磁盘文件中写入数据时,由于是日志文件,所以是顺序写的。顺序写的效率,要远大于随机写。这种先写日志的方式,称之为Write-Ahead Logging(WAL)。

undo log

undo log(回滚日志),用于记录数据被修改前的信息,作用包含两个:提供回滚(保证事务的原子性)和MVCC(多版本并发控制)。

undo log和redo log记录物理日志不一样,它是逻辑日志。可以认为当delete一条记录时,undo log中会记录一条对应的insert记录,反之亦然。当update一条记录时,它记录一条对应相反的update记录。当执行rollback时,就可以从undo log中的逻辑记录读取到相应的内容并进行回滚。

  • Undo log销毁:undo log在事务执行时产生,事务提交时,并不会立即删除undo log,因为这些日志可能还用于MVCC。
  • Undo log存储:undo log采用段的方式进行管理和记录,存放在前面介绍的 rollback segment(回滚段)中,内部包含1024个undo log segment。

MVCC

基本概念

  • 当前读
    读取的是记录的最新版本,读取时还要保证其他并发事务不能修改当前记录,会对读取的记录进行加锁。对于日常的操作,如:select … lock in share mode(共享锁),select … for update、update、insert、delete(排他锁)都是一种当前读。

  • 快照读
    简单的select(不加锁)就是快照读,快照读,读取的是记录数据的可见版本,有可能是历史数据,不加锁,是非阻塞读。

    • Read Committed:每次select,都生成一个快照读。
    • Repeatable Read:开启事务后第一个select语句才是快照读的地方。
    • Serializable:快照读会退化为当前读。
  • MVCC
    全称 Multi-Version Concurrency Control(多版本并发控制)。指维护一个数据的多个版本,使得读写操作没有冲突,快照读为MySQL实现MVCC提供了一个非阻塞读功能。MVCC的具体实现,还需要依赖于数据库记录中的三个隐式字段、undo log日志、readView。

隐式字段

当创建表时,查看表结构可以显式地看到字段。实际上除了显式字段以外,InnoDB还会自动的添加三个隐藏字段。

隐藏字段含义
DB_TRX_ID最近修改事务ID,记录插入这条记录或最后一次修改该记录的事务ID。
DB_ROLL_PTR回滚指针,指向这条记录的上一个版本,用于配合undo log,指向上一个版本。
DB_ROW_ID隐藏主键,如果表结构没有指定主键,将会生成该隐藏字段。

上述前两个字段是肯定会添加的,是否添加最后一个字段 DB_ROW_ID,得看当前表有没有主键,如果有主键,则不会添加该隐藏字段。

查看表结构及其中的字段信息(Linux命令行)
ibd2sdi 表名.ibd

undo log版本链

undo log
回滚日志,在 insert、update、delete 的时候产生的便于数据回滚的日志。
当 insert 的时候,产生的 undo log 日志只在回滚时需要,在事务提交后,可被立即删除。
而 update、delete 的时候,产生的 undo log 日志不仅在回滚时需要,在快照读时也需要,不会被立即删除。

undo log版本链
不同事务或相同事务对同一条记录进行修改,会导致该记录的 undo log 生成一条记录版本链表,链表的头部是最新的旧记录,链表尾部是最早的旧记录。

readView

ReadView(读视图)是快照读 SQL 执行时 MVCC 提取数据的依据,记录并维护系统当前活跃的事务(未提交的)id。

ReadView中包含了四个核心字段:

字段含义
m_ids当前活跃的事务ID集合
min_trx_id最小活跃事务ID
max_trx_id预分配事务ID,当前最大事务ID+1(因为事务ID是自增的)
creator_trx_idReadView创建者的事务ID

而在 readview 中就规定了版本链数据的访问规则(trx_id 代表当前undolog版本链对应事务ID):

条件是否可以访问说明
trx_id = creator_trx_id可以访问该版本成立,说明数据是当前这个事务更改的
trx_id < min_trx_id可以访问该版本成立,说明数据已经提交了
trx_id > max_trx_id不可以访问该版本成立,说明该事务是在ReadView生成后才开启
min_trx_id <= trx_id <= max_trx_id如果 trx_id 不在 m_ids 中,可以访问该版本成立,说明数据已经提交

不同的隔离级别,生成ReadView的时机不同:

  • READ COMMITTED:在事务中每一次执行快照读时生成ReadView。
  • REPEATABLE READ:仅在事务中第一次执行快照读时生成ReadView,后续复用该ReadView。

原理分析

RC隔离级别
RC隔离级别下,在事务中每一次执行快照读时生成 ReadView

分析事务5中,两次快照读读取数据,是如何获取数据的。

第一次快照读具体的读取过程:

在这里插入图片描述

第二次快照读具体的读取过程:

在这里插入图片描述

RR隔离级别
RR隔离级别下,仅在事务中第一次执行快照读时生成ReadView,后续复用该ReadView
而 RR 是可重复读,在一个事务中,执行两次相同的select语句,查询到的结果是一样的。

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.coloradmin.cn/o/397507.html

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈,一经查实,立即删除!

相关文章

React18 setState是同步还是异步?

相信大家对于react的setState肯定是不陌生了, 这是一个用于更新状态的函数. 但是在之前有一道非常经典的面试题就是关于setState是同步还是异步的问题, 具体可以参考我之前写的一篇文章: 一篇文章彻底理解setState是同步还是异步&#xff01;. 对于react 18之前的版本, 上文说的…

2019年MathorCup数学建模A题数据驱动的城市轨道交通网络优化策略解题全过程文档及程序

2019年第九届MathorCup高校数学建模挑战赛 A题 数据驱动的城市轨道交通网络优化策略 原题再现&#xff1a; 截至 2018 年 12 月 31 日&#xff0c;中国内地累计共有 35 座城市建成并投运城市轨道交通&#xff0c;里程共计 5766.6 公里。进入“十三五”以来&#xff0c;三年累…

Spring Bean实例创建装载过程分析-spring源码学习(2)

随着Spring框架的应用越来越广泛&#xff0c;对Spring Bean的实例创建装载过程的了解就显得尤为重要。本文将围绕这一主题&#xff0c;为大家详细介绍Spring Bean实例创建装载的整个过程&#xff0c;并透彻解析其细节。 时序图 一、Spring Bean实例的创建过程 Spring Bean实例…

Web前端学习:章三 -- JavaScript预热(二)

六五&#xff1a;作用域与function function&#xff1a;函数&#xff0c;不是数学上的函数&#xff0c;与写代码有关 JS中的函数&#xff1a;运用它&#xff0c;起个名字&#xff0c;然后对函数进行调用&#xff0c;即可将函数中的内容执行一遍 1、function 最基本的作用域…

CNCF x Alibaba云原生技术公开课 第五章 应用编排与管理

1、元数据的组成 用来识别资源的具有标识型的标签&#xff1a;Labels key valueselector(筛选/组合资源):多个相等条件&#xff0c;逻辑与的关系; 集合型,in notin 用来描述资源的非标识型的注解&#xff1a;Annotations 扩展资源的spec/status可以包含特殊字符可以结构化也可…

企业管理经典书籍推荐

几乎每一位成功的商业人士都有着良好的阅读习惯。并且他们阅读涉猎的范围也大多与企业管理和领导力有关。而关于企业管理经典书籍&#xff0c;我推荐你看以下这两本。一本是《经理人参阅&#xff1a;企业管理实务》&#xff0c;另一本是《经理人参阅&#xff1a;领导力提升》。…

无刷高速风筒方案介绍--【PCBA方案】

疫情三年过去&#xff0c;春节后&#xff0c;一个新的开始&#xff0c;大家满怀希望畅谈今年好气象。 三年来一波一波的封城、隔离、核酸&#xff0c;经济压抑到了无以复加的地步&#xff0c;也导致了诸多社会问题的出现。消费力被磨平&#xff0c;人们小心翼翼的生活。 常跟…

【第六课】Arcgis中基本操作

一、前言 前面课程已经对Arcgis主页面&#xff0c;相关板块进行介绍&#xff0c;相信大家也有了一定的了解&#xff0c;当然这部分内容其实不需要大家死记硬背&#xff0c;有一个初步印象即可&#xff0c;这一节课程可能更需要掌握&#xff0c;之后会慢慢有实例给大家展现&…

数据结构刷题(二十):17电话号码的字母组合、39组合总和、40组合总和II

一、电话号码的字母组合题目链接思路&#xff1a;回溯三部曲。确定回溯函数参数&#xff1a;题目中给的 digits&#xff0c;还要有一个参数就是int型的index&#xff08;记录遍历第几个数字&#xff0c;就是用来遍历digits的&#xff0c;同时也代表了递归的深度&#xff09;&am…

【牛客刷题专栏】0x10:JZ8 二叉树的下一个结点(C语言编程题)

前言 个人推荐在牛客网刷题(点击可以跳转)&#xff0c;它登陆后会保存刷题记录进度&#xff0c;重新登录时写过的题目代码不会丢失。个人刷题练习系列专栏&#xff1a;个人CSDN牛客刷题专栏。 题目来自&#xff1a;牛客/题库 / 在线编程 / 剑指offer&#xff1a; 目录前言问题…

@Component实现原理

直接从关键代码开始&#xff1a; 直接找到org.springframework.context.support.AbstractApplicationContext#refresh方法&#xff0c;找到invokeBeanFactoryPostProcessors(beanFactory)方法&#xff0c;最终找org.springframework.context.support.PostProcessorRegistratio…

各种各样的锁

1.悲观锁和乐观锁 一个共享数据加了悲观锁&#xff0c;那线程每次想操作这个数据前都会假设其他线程也可能会操作这个数据&#xff0c;所以每次操作前都会上锁&#xff0c;这样其他线程想操作这个数据拿不到锁只能阻塞了。 synchronized 和 ReentrantLock是典型的悲观锁 共享…

Linux学习记录——십사 进程控制(1)

文章目录1、进程创建1、fork函数2、进程终止1、情况分类2、如何理解进程终止3、进程终止的方式3、进程等待1、进程创建 1、fork函数 fork函数从已存在进程中创建一个新进程&#xff0c;新进程为子进程&#xff0c;原进程为父进程。 #include <unistd.h> pid_t fork(vo…

论文阅读:Syntax-Aware Network for Handwritten Mathematical Expression Recognition

论文阅读&#xff1a;Syntax-Aware Network for Handwritten Mathematical Expression Recognition1 主要观点&#xff1a; 1、提出将语法信息纳入编码器-解码器网络的方法。使用一组语法规则&#xff0c;用于将每个表达式的LaTeX标记序列转换为解析树&#xff1b;用深度神经…

【vue create】一.使用vue creat搭建项目

场景&#xff1a;使用vue create脚手架快速搭建vue的项目 前提&#xff1a;需要安装node.js和cnpm以及yarn 并且cnpm需要设置为淘宝镜像&#xff0c;cnpm和yarn安装教程网上很多可以自行搜索 1.使用dos命令安装vue-cli脚手架 //这个是从镜像源下载 cnpm install -g vue/cli 查…

Google三大论文之GFS

Google三大论文之GFS Google GFS&#xff08;Google File System&#xff09; 文件系统&#xff0c;一个面向大规模数据密集型应用的、可伸缩的分布式文件系统。GFS 虽然运行在廉价的普遍硬件设备上&#xff0c;但是它依然了提供灾难冗余的能力&#xff0c;为大量客户机提供了…

接口自动化测试——多套被测环境的切换

文章目录一、意义二、实现目标三、实现方案1、使用环境管理文件2、使用不同的文件管理不同的环境&#xff08;建议使用&#xff09;3、在接口用例中指定path&#xff0c;不指定url4、环境切换a、通过环境变量进行切换b、通过命令行参数进行切换四、代码实现1、通过环境变量进行…

GPT格式的磁盘扩容

GPT格式的系统盘已经满了&#xff0c;现在需要扩充系统盘 1.怎么查看是不是GPT格式&#xff1a;fdisk -l 2.查看磁盘挂载分区情况 lsblk 2.使用parted对分区进行操作 parted /dev/sda 3.开始分区 mkpart 4.格式化sda4分区后&#xff0c;会发现分区4的文件系统已经显示为xfs…

Docker 常见操作及部署springboot、Shiro、SpringData脚手架(上)

1、查看docker 的状态 systemctl status docker 2、查看docker运行状态的详细信息 docker info 3、docker部署第一个应用 docker search nginx 拉取镜像到本地 docker pull nginx 4、查看本地的镜像信息 docker images 5、使用镜像来创建容器 docker run -d -p 1234:80 ng…

SSH配置文件解析

1.修改端口号&#xff0c;设置登录输入密码等待过期时间&#xff0c;拒绝远程登录root&#xff0c;密码为空&#xff0c;密码登录&#xff0c; [rootzzp124 ~]# vim /etc/ssh/sshd_config [rootzzp124 ~]# systemctl restart sshd.service [rootzzp124 ~]# lsof -i :2…