大数据技术之——zeppelin数据清洗

news2024/11/18 23:37:44

一、zeppelin的安装

zeppelin解压后进入到conf配置文件界面。

  1. 修改zeppelin-site.xml

[root@hadoop02 conf]# cp zeppelin-site.xml.template zeppelin-site.xml
[root@hadoop02 conf]# vim zeppelin-site.xml

将IP地址和端口号设置成自己的

  1. 修改 zeppelin-env.sh

export JAVA HOME=/opt/soft/jdk180
export HADOOP HOME=/opt/soft/hadoop313
export HADOOP CONF DIR=/opt/soft/hadoop313/etc/hadoop

  1. 将hive-site.xml拷贝到zeppelin中

[root@hadoop02 conf]# cp /opt/soft/hive312/conf/hive-site.xml /opt/soft/zeppelin/conf

  1. 添加jar包

路径切换到/opt/soft/zeppelin/interpreter/jdbc下,添加如下jar包:

[root@hadoop02 jdbc]# cp /opt/soft/hadoop313/share/hadoop/common/hadoop/common-3.1.3.jar ./
[root@hadoop02 jdbc]# cp /opt/soft/hive312/lib/curator-client-2.12.0.jar ./
[root@hadoop02 jdbc]# cp /opt/soft/hive312/lib/guava-27.0-jre.jar ./
[root@hadoop02 jdbc]# cp /opt/soft/hive312/lib/hive-jdbc-3.1.2.jar ./
[root@hadoop02 jdbc]# cp /opt/soft/hive312/lib/hive-serde-3.1.2.jar ./
[root@hadoop02 jdbc]# cp /opt/soft/hive312/lib/hive-service-3.1.2.jar ./
[root@hadoop02 jdbc]# cp /opt/soft/hive312/lib/hive-service-rpc-3.1.2.jar ./
[root@hadoop02 jdbc]# cp /opt/soft/hive312/lib/libthrift-0.9.3.jar ./
[root@hadoop02 jdbc]# cp /opt/soft/hive312/lib/protobuf-java-2.5.0jar ./

添加外部jar包:

  1. 配置profile文件

# ZEPPELIN_HOME
export ZEPPELIN_HOME=/opt/soft/zeppelin
export PATH=$PATH:$ZEPPELIN_HOME/bin

  1. 启动zeppelin

[root@hadoop02 jdbc]# zeppelin-daemon.sh start

打开浏览器

二、数据结构

  1. 数据准备

表数据存放在本地的/opt/stufile/storetransaction中。

1. 检查行数
[root@hadoop02 storetransaction]# wc -l customer_details.csv
501 customer_details.csv

2. 查看文件header行
[root@hadoop02 storetransaction]# head -n 2 customer_details.csv 
customer_id,first_name,last_name,email,gender,address,country,language,job,credit_type,credit_no
1,Spencer,Raffeorty,sraffeorty0@dropbox.com,Male,9274 Lyons Court,China,Khmer,Safety Technician III,jcb,3589373385487669
  1. 创建对应目录

1. 创建数据库
drop database if exists shopping cascade;
create database if not exists shopping;

2. hdfs中创建目录,用于保存数据表
hdfs dfs -mkdir -p /shopping/data/customer
hdfs dfs -mkdir -p /shopping/data/store
hdfs dfs -mkdir -p /shopping/data/review
hdfs dfs -mkdir -p /shopping/data/transcation

3. 将本地数据上传到hdfs
hdfs dfs -put ./customer_details.csv /shopping/data/customer
hdfs dfs -put ./store_details.csv /shopping/data/store
hdfs dfs -put ./store_review.csv /shopping/data/review
hdfs dfs -put ./transaction_details.csv /shopping/data/transcation

4. 查看hdfs目录中保存的文件
hdfs dfs -ls /shopping/data/customer
hdfs dfs -ls /shopping/data/review
hdfs dfs -ls /shopping/data/store
hdfs dfs -ls /shopping/data/transcation

  1. 建表语句

创建外部表,表相关信息存储在hdfs中。

1. 顾客详细表
create external table if not exists ext_customer_details(
    customer_id string,
    first_name  string,
    last_name   string,
    email       string,
    gender      string,
    address     string,
    country     string,
    language    string,
    job         string,
    credit_type string,
    credit_no   string
)
row format serde 'org.apache.hadoop.hive.serde2.OpenCSVSerde'
location '/shopping/data/customer'
tblproperties('skip.header.line.count'='1');


2. 交易信息表
create external table if not exists ext_transaction_details(
    transaction_id  string,
    customer_id     string,
    store_id        string,
    price           decimal(8,2),
    product         string,
    purchase_date            string,
    purchase_time            string
)
row format serde 'org.apache.hadoop.hive.serde2.OpenCSVSerde'
location '/shopping/data/transcation'
tblproperties('skip.header.line.count'='1');


3. 店铺信息表
create external table if not exists ext_store_details(
    store_id        string,
    store_name      string,
    employee_number string
)
row format serde 'org.apache.hadoop.hive.serde2.OpenCSVSerde'
location '/shopping/data/store'
tblproperties('skip.header.line.count'='1');


4. 评分表
create external table if not exists ext_review_details(
    transaction_id  string,
    store_id        string,
    review_score    string
)
row format serde 'org.apache.hadoop.hive.serde2.OpenCSVSerde'
location '/shopping/data/review'
tblproperties('skip.header.line.count'='1');

三、数据清洗

数据脱敏

在customer表中,email字段、address字段、credit_no字段不希望被显示为明文,需要对其进行加密。

drop view if exists vw_customer_details;
create view if not exists vw_customer_details as
select 
customer_id,first_name,unbase64(last_name) as last_name,
unbase64(email) as email, gender,unbase64(address) as address,
country,job,credit_type,
unbase64(concat(unbase64(credit_no),'hello')) as credit_no
from  ext_customer_details;

去除重复值

with
basetb as (select  row_number()over(partition by transaction_id) as rn,
                  transaction_id,customer_id,store_id,price,product,purchase_date,purchase_time,
                  substr(purchase_date,0,7) purchase_month from ext_transaction_details),
basetb2 as (select if(rn=1,transaction_id,concat(transaction_id,'_fix',rn)) transaction_id ,
                   customer_id,store_id,price,product,purchase_date,purchase_time,purchase_month from basetb)
select * from basetb2 where transaction_id like '%fix%' limit 100;

过滤掉缺失内容

create view if not exists vm_store_review as
select * from ext_store_review where review_score <> '';

四、数据分析

Customer分析

  • 1.1 找出顾客最常用的信用卡

select 
    credit_type, count(customer_id)
from ext_customer_details group by credit_type;

  • 1.2 找出客户资料中排名前五的职位名称

select
    credit_type,count(credit_type) count_credit_type
from  vw_customer_details group by credit_type order by credit_type having gender='female';

  • 1.3 在美国女性最常用的信用卡

select
    credit_type,count(credit_type) count_credit_type
from  vw_customer_details 
where gender='Female' and country='United States' 
group by credit_type  
order by count_credit_type desc limit 3 ;

  • 1.4 按性别和国家进行客户统计

select
    gender,country,count(*)
from  vw_customer_details group by gender,country;

Transaction分析

  • 2.1 计算每月总收入

select
    purchase_month,sum(price)
from transaction_details group by purchase_month;

  • 2.2 计算每个季度的总收入

with t2 as (
    select concat_ws('-',cast(year(purchase_date) as string),cast(ceil(month(purchase_date)/3) as string)) as concat_quarter1,price
from transaction_details)
select concat_quarter1,sum(price) from t2 group by concat_quarter1;

或者直接使用季度函数
with t2 as (
    select concat_ws('-',cast(year(purchase_date) as string),cast(ceil(month(purchase_date)/3) as string)) as concat_quarter1,price
from transaction_details)
select concat_quarter1,sum(price) from t2 group by concat_quarter1;

  • 2.3 按年计算总收入

select
    year(purchase_date),sum(price)
from transaction_details group by year(purchase_date);

  • 2.4 按工作日计算总收入

select
    dayofweek(purchase_date) week_day,sum(price)
from transaction_details 
where dayofweek(purchase_date) between 1 and 5
group by dayofweek(purchase_date);

  • 按照工作日、月、季度、年计算总收入

with basetb as(
SELECT
    price,
    dayofweek(purchase_date) as weekday,
    month(purchase_date) as month,
    concat_ws('-',cast(year(purchase_date) as string),cast(ceil(month(purchase_date)/3) as string)) as quarter,
    year(purchase_date) as year
from transaction_details)
select sum(price) as sumMoney,weekday,month,quarter,year from basetb group by weekday,month,quarter,year

  • 2.5 按时间段计算总收入(需要清理数据)

这里的时间格式不统一,有24时记时,也有12时记时,需要对数据进行整合。

解体思路:

按时间段计算总收入

early morning(5:00-8:00)

morning(8:00-11:00)

noon(11:00-13:00)

afternoon(13:00-18:00)

evening(18:00-22:00)

night(22:00-5:00)

1. 将12时转换为24时
select
    if(purchase_time like '%M',
    from_unixtime(unix_timestamp(purchase_time,'hh:mm aa'),'HH:mm'),
    purchase_time) as time_form
from transaction_details;

2.分段进行分析
with
basetb as (
select
    price,purchase_time,
    if(purchase_time like '%M',
        from_unixtime(unix_timestamp(purchase_time,'hh:mm aa'),'HH:mm'),
        purchase_time) as time_format
from transaction_details
 ),
basetb2 as (
select price,purchase_time,time_format,
       cast(split(time_format,':')[0] as decimal(4,2)) +
       cast(split(time_format,':')[1] as decimal(4,2))/60 as `purchase_time_num`
from basetb
)
select price,purchase_time,
       if(purchase_time_num>5 and purchase_time_num<=8,'early morning',
           if(purchase_time_num>8 and purchase_time_num<=11,'morning',
               if(purchase_time_num>11 and purchase_time_num<=13,'noon',
                   if(purchase_time_num>13 and purchase_time_num<=18,'afternoon',
                       if(purchase_time_num>18 and purchase_time_num<=22,'evening',
                           'night'))))) as time_bucket
from basetb2;

3. 对数据进行分析
select time_bucket1,sum(price) from basetb3
group by time_bucket1;

  • 2.6 按时间段计算平均消费

select time_bucket1,avg(price) from basetb3
group by time_bucket1;

  • 2.7 按工作日计算平均消费

select
    dayofweek(purchase_date),avg(price)
from  transaction_details 
where dayofweek(purchase_date) between 1 and 5
group by dayofweek(purchase_date)

  • 2.8 计算年、月、日的交易总数

select
    count(1) over(partition by year(purchase_date)) year,
    count(1) over(partition by year(purchase_date),month(purchase_date)) month,
    count(1) over(partition by year(purchase_date),month(purchase_date),day(purchase_date)) day
from  transaction_details 

  • 2.9 找出交易量最大的10个客户

select
    customer_id,count(1) a
from transaction_details group by customer_id order by a desc limit 10

  • 2.10 找出消费最多的前10位顾客

select
    customer_id,sum(price) a
from transaction_details group by customer_id order by a desc limit 10

  • 2.11 统计该期间交易数量最少的用户

select
    customer_id,count(1) a
from transaction_details group by customer_id order by a asc limit 5

  • 2.12 计算每个季度的独立客户总数

1. 每个季度的用户总数
select count(1),year(purchase_date),quarter(purchase_date)
from transaction_details group by year(purchase_date),quarter(purchase_date)

2. 去除掉重复的用户
select count(1),year(purchase_date),quarter(purchase_date)
from
     (
     select row_number() over (partition by customer_id,year(purchase_date),quarter(purchase_date)) rm1 ,* from transaction_details
         ) t1
     where t1.rm1=1 group by year(purchase_date),quarter(purchase_date)

  • 2.13 计算每周的独立客户总数

select count(1),weekofyear(purchase_date)
from
     (
     select row_number() over (partition by customer_id,year(purchase_date),quarter(purchase_date)) rm1 ,* from transaction_details
         ) t1
     where t1.rm1=1 group by weekofyear(purchase_date)

  • 2.14 计算整个活动客户平均花费的最大值

select customer_id,max(tb.avg1) from
    (select customer_id,avg(price) avg1 
    from transaction_details group by customer_id) tb;

  • 2.15 统计每月花费最多的客户

with t1 as ( select
    purchase_month,customer_id,sum(price) sp
from transaction_details group by purchase_month,customer_id )
select purchase_month,max(sp) from t1 group by purchase_month

  • 2.16 统计每月访问次数最多的客户

with t1 as (
select
    purchase_month,customer_id,count(price) cp,
       rank() over (partition by purchase_month order by count(price) desc) rk
from transaction_details group by purchase_month,customer_id
 )
select purchase_month,customer_id,cp from t1 where rk=1;

  • 2.17 按总价找出最受欢迎的5种产品

select product,sum(price) sp from transaction_details 
group by product 
order by sp desc limit 5;

  • 2.18根据购买频率找出最畅销的5种产品

select product,count(price) cp from transaction_details 
group by product 
order by cp desc limit 5;

  • 2.19根据客户数量找出最受欢迎的5种产品

select product,count(distinct customer_id) cp from transaction_details 
group by product 
order by cp desc limit 5;

  • 2.20 验证前5个details

Store分析

  • 3.1 按客流量找出最受欢迎的商店

select
    store_name,count(distinct customer_id) as visit
from transaction_details td join ext_store_details sd on td.store_id=sd.store_id
group by store_name order by visit

  • 3.2 根据顾客消费价格找出最受欢迎的商店

select
    store_name,sum(price) as visit
from transaction_details td join ext_store_details sd on td.store_id=sd.store_id
group by store_name order by visit

  • 3.3 根据顾客交易情况找出最受欢迎的商店

select
    store_name,count(customer_id) as c
from  transaction_details td join ext_store_details sd on td.store_id=sd.store_id
group by store_name order by c desc

  • 3.4 根据商店和唯一的顾客id获取最受欢迎的产品

with t1 as(
select
    store_name,product,count(distinct customer_id) cdc
from  transaction_details td join ext_store_details sd on td.store_id=sd.store_id
group by store_name,product having cdc>3 order by cdc desc
),
t2 as(
select store_name,product,cdc,
       row_number() over (partition by store_name order by  cdc desc ) rn from t1
)
select store_name,product,cdc from t2 where rn=1;

  • 3.5 获取每个商店的员工与顾客比

with 
t1 as ( select count(1) c1,store_id
    from transaction_details td
    group by td.store_id )
select concat(substring(cast(esd.employee_number/t1.c1 as decimal(9,8))*100.0,0,4),'%')
    ,t1.store_id,esd.store_name from t1 
join shopping.ext_store_details esd on t1.store_id=esd.store_id

  • 3.6 按年和月计算每家店的收入

with t1 as (
    select year(purchase_date) year, month(purchase_date) month, store_id si, sum(price) sp
    from transaction_details
    group by year(purchase_date), month(purchase_date), store_id
)
select esd.store_id,esd.store_name,t1.year,t1.month,t1.sp from t1 
join shopping.ext_store_details esd on t1.si=esd.store_id

  • 3.7 按店铺制作总收益饼图

select
    store_id,sum(price)
from transaction_details group by store_id

  • 3.8 找出每个商店最繁忙的时间段

with t1 as(
select
       price,purchase_time,store_id,
    if(purchase_time like '%M',
        from_unixtime(unix_timestamp(purchase_time,'hh:mm aa'),'HH:mm'),
        from_unixtime(unix_timestamp(purchase_time,'HH:mm'),'HH:mm')) time1
from transaction_details
),
     t2 as (
select
    price,purchase_time,store_id,
       time1,
    cast(split(time1,':')[0] as int)+cast(split(time1,':')[1] as decimal(4,2))/60 time2
from t1
 ),
     t3 as (
select
    price,purchase_time,store_id,time1,
              case when time2>5 and time2<=8 then 'early morning'
            when time2<=11 and time2>8 then 'morning'
            when time2<=13 and time2>11 then 'noon'
            when time2<=18 and time2>13 then 'afternoon'
            when time2<=22 and time2>18 then 'evening'
            else 'night' end time3
from t2
 )select store_id,time3,count(1) sp from t3 group by time3,store_id order by sp desc;

  • 3.9 找出每家店的忠实顾客

with t1 as ( select
    row_number() over (partition by customer_id,store_id) ro,*
    from transaction_details )
select customer_id,store_id,count(1) c from t1 
group by customer_id,store_id having c>=8

  • 3.10 根据每位员工的最高收入找出明星商店

select distinct td.store_id,esd.store_name,esd.employee_number,t1.sp/esd.employee_number rk from transaction_details td
    join ext_store_details esd on td.store_id = esd.store_id
    join (select store_id,sum(price) sp from transaction_details group by store_id) t1 on td.store_id=t1.store_id
order by rk desc

Review分析

  • 4.1 在ext_store_review中找出存在冲突的交易映射关系

with basetb as(
select row_number() over (partition by transaction_id) as row_number1,* from ext_review_details
)
select row_number1,a.transaction_id,a.store_id,b.store_id,a.review_score,b.review_score from basetb a
join ext_review_details b on a.transaction_id=b.transaction_id
where row_number1 >1

  • 4.2 了解客户评价的覆盖率

with t1 as (
select count(1) c1 from ext_review_details where review_score <> ''
 ),
t2 as (
select count(1) c2 from ext_review_details where review_score = ''
)
select concat(cast((c1-c2)/c1*100 as decimal(4,2)),'%') from t1 join t2

  • 4.3 根据评分了解客户的分布情况

select c.country,r.review_score,count(price) from ext_review_details r
    join transaction_details t on r.transaction_id=t.transaction_id
    join ext_customer_details c on t.customer_id = c.customer_id
group by review_score,c.country;

  • 4.4 根据交易了解客户的分布情况

select
    country,sum(price),count(price)
from transaction_details td
    join ext_customer_details cd on td.customer_id = cd.customer_id
group by cd.country

  • 4.5 客户给出的最佳评价是否总是同一家门店

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.coloradmin.cn/o/388755.html

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈,一经查实,立即删除!

相关文章

Linux小黑板(10):信号

我们写在linux系统环境下写一个程序&#xff0c;唔&#xff0c;"它的功能是每隔1s向屏幕打印hello world。"这时&#xff0c;我们在键盘上按出"Ctrl C"后,进程会发生什么&#xff1f;&#xff1f;我们清晰地看到&#xff0c;进程已经在我们按出"Ctrl…

UML2——行为图

目录 一、前言 二、活动图 三、交互图 3.1 一般序列图 3.2 时间约束序列图 3.3 协作图 四、用例图 五、状态图 一、前言 UML 是由视图&#xff08;View&#xff09;、图&#xff08;Diagrams&#xff09;、模型元素&#xff08;Model elements&#xff09;和通用机制等几…

(图像分割)基于图论的归一化分割

解释&#xff1a;将图像映射成图&#xff0c;以图为研究对象&#xff0c;利用图的理论知识获得图像的分割。 下面介绍&#xff1a;图的基本理论&#xff0c;基于图论的归一化分割算法 一、图的基本理论 图G&#xff1d;&#xff08;V&#xff0c;E&#xff0c;&#xff09;&…

《管理世界》数据复现:国有资本参股如何影响民营企业?——基于债务融资视角的研究

摘要&#xff1a; 本文以债务融资为切入点&#xff0c;从“未阐明的规则”和“阐明的规则”两个层面探讨了国有资本参股的“反向混改”是否以及如何影响民营企业。研究发现&#xff1a;国有资本参股可以显著降低民营企业的债务融资成本&#xff0c;扩大债务融资规模。…

性能测试——LoadRunner: Controller的使用

Controller Controller是用来创建测试环境&#xff0c;执行在VUG中编写的测试脚本 可以直接点击Controller的快捷方式打开,也可以在VUG中打开 这里将虚拟用户数设置为3,比较适合自己的电脑性能 整个controller分为下面几个模块 这里先设置左下角的目标计划 设置初始化:双击…

PHP 8.1.14升级低版本openssl扩展的操作方法

问题背景&#xff1a; PHP8.1.4内嵌openssl源码编译出来的openssl库版本号是1.0.2.x系列&#xff0c;低版本的openssl扩展存在安全漏洞&#xff0c;需要将该扩展升级openssl 社区最新版本3.0.8 操作步骤&#xff1a; 安装最新版本的openssl wget https://github.com/openssl…

Java面试总结(四)

synchroize的实例、静态、代码块的锁对象 修饰实例方法 修饰静态方法 修饰代码块 1、修饰实例方法 &#xff08;锁当前对象实例&#xff09; 给当前对象实例加锁&#xff0c;进入同步代码前要获得 当前对象实例的锁 。 synchronized void method() {//业务代码 }2、修饰静…

在vue中如果computed属性是一个异步操作怎么办?

在计算属性中使用异步方法时&#xff0c;可以使用async/await来处理异步操作。由于计算属性是基于它们的依赖缓存的&#xff0c;所以我们需要使用一个返回Promise的异步方法来确保计算属性能够正常运行。 下面是一个简单的示例&#xff0c;演示如何在计算属性中使用异步方法&am…

P6入门:P6 Professional常用快捷键/热键

目录 一 引言 Primavera P6 专业版 Primavera P6 EPPM&#xff08;网络客户端&#xff09; Primavera P6 Alt 键 Primavera P6 功能键 一 引言 在 Oracle Primavera P6 中&#xff0c;有热键命令可以节省宝贵的时间。尤其是作为一个与 Primavera P6 长打交道人熟练掌握这…

苹果手机备份的文件在电脑什么地方 苹果备份文件怎么查看

在这个网络信息时代&#xff0c;为手机进行定期备份已经成为了家常便饭。在使用备份软件对苹果手机进行备份后&#xff0c;苹果手机备份的文件在什么地方&#xff0c;苹果备份文件怎么查看呢&#xff1f;本文就带大家来了解一下。 一、苹果手机备份的文件在电脑什么地方 大家…

数据库三大范式、BC范式、第四范式

目录第一范式&#xff08;1NF&#xff09;&#xff1a;原子性&#xff08;存储的数据应该具有“不可再分性”&#xff09;第二范式&#xff08;2NF&#xff09;&#xff1a;唯一性 (消除非主键部分依赖联合主键中的部分字段)&#xff08;一定要在第一范式已经满足的情况下&…

Python之flask基础

文章目录入门小案例及认识路由小总结配置文件路由系统路由支持正则cbv &#xff08;用的比较少&#xff09;模板渲染变量及循环请求响应pipreqs&#xff08;找当前项目依赖的包&#xff09;闪现&#xff08;flash&#xff09;请求扩展&#xff08;类似中间件&#xff09;猴子补…

【Redis】Redis集群之哨兵机制

【Redis】Redis集群之哨兵机制 文章目录【Redis】Redis集群之哨兵机制1. 哨兵的作用和原理1.1 哨兵的作用1.2 redis服务状态监控1.3 选举新master1.4 故障转移1.5 总结2. 搭建哨兵集群2.1 准备实例和配置2.2 启动2.3 测试3. RedisTemplate的哨兵模式1. 哨兵的作用和原理 1.1 哨…

1634_linux中把pdf拆分成独立的图片文件

全部学习汇总&#xff1a; GreyZhang/toolbox: 常用的工具使用查询&#xff0c;非教程&#xff0c;仅作为自我参考&#xff01; (github.com) 最近工作学习之中使用pdf的频次非常高&#xff0c;这种格式的通用性的确是不错。在目前的很多平台上都有很好用的软件。不过&#xff…

ios设备管理软件 2.16.9官网Mac/Windows下载电脑版功能介绍

imazing 2.16.9官网Mac/Windows下载电脑版是款针对苹果设备所打造的管理工具。iMazing为用户提供多种设备管理功能&#xff0c;每一位用户都能以自己的形式管理苹果设备。iMazing与苹果设备连接后&#xff0c;用户就可以轻松传输文件&#xff0c;浏览保存信息等。 应用介绍 i…

Zookeeper3.5.7版本——集群启动停止脚本

目录一、Zookeeper3.5.7集群部署&#xff08;linux环境-centos7&#xff09;二、3台服务器信息三、Zookeeper3.5.7集群启动停止脚本3.1、编写zk.sh脚本3.2、增加脚本执行权限3.3、执行Zookeeper 集群的zk.sh脚本四、执行脚本启动Zookeeper 集群五、执行脚本查看Zookeeper 集群状…

Lesson11---分类问题

11.1 逻辑回归 11.1.1 广义线性回归 课程回顾 线性回归&#xff1a;将自变量和因变量之间的关系&#xff0c;用线性模型来表示&#xff1b;根据已知的样本数据&#xff0c;对未来的、或者未知的数据进行估计 11.1.2 逻辑回归 11.1.2.1 分类问题 分类问题&#xff1a;垃圾…

SS-ELM-AE与S2-BLS相关论文阅读记录

Broad learning system for semi-supervised learning 摘要&#xff1a;本文认为&#xff0c;原始BLS采用的稀疏自编码器来生成特征节点是一种无监督学习方法&#xff0c;这意味着忽略了标注数据的一些信息&#xff0c;并且难以保证同类样本之间的相似性和相邻性&#xff0c;同…

CentOS 7.9汇编语言版Hello World

先下载、编译nasm汇编器。NASM汇编器官网如下图所示&#xff1a; 可以点图中的List进入历史版本下载网址&#xff1a; 我这里下载的是nasm-2.15.05.tar.bz2 在CentOS 7中&#xff0c;使用 wget http://www.nasm.us/pub/nasm/releasebuilds/2.15.05/nasm-2.15.05.tar.bz2下载…

用Python Flask为女朋友做一个简单的网站(附可运行的源码)

&#x1f31f;所属专栏&#xff1a;献给榕榕&#x1f414;作者简介&#xff1a;rchjr——五带信管菜只因一枚&#x1f62e;前言&#xff1a;该专栏系为女友准备的&#xff0c;里面会不定时发一些讨好她的技术作品&#xff0c;感兴趣的小伙伴可以关注一下~&#x1f449;文章简介…