MQ-7一氧化碳传感器模块功能实现(STM32)

news2025/1/18 15:59:35

认识MQ-7模块与其工作原理

        首先来认识MQ-7模块,MQ-7可以检测空气中的一氧化碳(CO)浓度。他采用半导体气敏元件来检测CO的气体浓度,其灵敏度高、反应速度快、响应时间短、成本低廉等特点使得它被广泛应用于智能家居、工业自动化、环保检测等领域。

        MQ-7模块的工作原理基于半导体材料在气体作用下发生电学性质的变化,通过测量这种变化来检测气体浓度。具体来说,MQ-7烟雾传感器内部有一块小小的加热器,通过电流加热,使得传感器的工作环境温度升高,同时加速气体分子的运动。模块中的半导体气敏元件表面涂有一层特殊的金属氧化物,当在特定温度下,空气中的CO气体与金属氧化物接触时,会发生氧化还原反应,使得金属氧化物表面的电阻发生变化,当空气中的CO浓度增加时,电阻减小,从而输出一个模拟信号。 

        回到MQ-7模块上,MQ-7一共有4个引脚,分别是GND、DOUT、AOUT和VCC。VCC是电源引脚,用于给模块供电,可以理解为正极,一般接3.3V或者5V。GND连接模块的地线,可以理解为是负极,通常是0V。DOUT是数字输出引脚,用于输出数字信号。AOUT是模拟输出引脚,用于输出模拟信号。我们一般使用AOUT引脚也就是读取模块输出的模拟信号。

        32单片机则是可以通过模数转换器(ADC)读取传感器输出的模拟电压信号,而我们需要做的则是根据传感器特性曲线函数将电压值转换为一氧化碳浓度值。

MQ-7的传感器特性曲线

模块与32单片机的连接

        这里我使用的单片机型号为STM32F407ze,上面也说过,要获得MQ-7测量的数据就要使用模数转换器(ADC),所以需要选择具有ADC功能的引脚,哪一个引脚拥有ADC功能可以通过查阅单片机的资料可知。

        通过查阅资料,我选择具有ADC功能的PA6引脚,PA6与CAMERA的第16引脚相连,所以只需要将MQ-7的AOUT引脚通过杜邦线接到CAMERA的第16引脚即可。剩下的就是接电源线了,因为CAMERA的第1引脚可以输出3.3V的电压,第2引脚接地,所以只需要将模块的VCC与GND与他们相连即可。

查看能使用ADC的引脚

MQ-7与STM32F407ze的连接

代码功能实现

        代码上的大致思路为:定义模块引脚和ADC后,首先获取ADC在一定时间内的平均值,其次,可以利用公式将ADC的平均值转化为MQ-7的输出电压值,接着根据这个电压信号和传感器特性曲线计算出CO的浓度。 

ADC部分

       adc.c

        因为要使用ADC功能,所以此段代码第一个函数用于定义使用ADC的引脚和功能,第二个函数用于获取ADC的值。

#include "adc.h"

void adc_Init()
{
    GPIO_InitTypeDef GPIO_InitStructure;
	ADC_CommonInitTypeDef ADC_CommonInitStructure;
    ADC_InitTypeDef ADC_InitStructure;

    // 使能 ADC 引脚的 GPIO 时钟
    RCC_AHB1PeriphClockCmd(RCC_AHB1Periph_GPIOA, ENABLE);

    // 将 ADC 引脚配置为模拟输入
    GPIO_InitStructure.GPIO_Pin = GPIO_Pin_6;
    GPIO_InitStructure.GPIO_Mode = GPIO_Mode_AN;
    GPIO_InitStructure.GPIO_PuPd = GPIO_PuPd_NOPULL ;
    GPIO_Init(GPIOA, &GPIO_InitStructure);

    // 使能 ADC2 时钟
    RCC_APB2PeriphClockCmd(RCC_APB2Periph_ADC2, ENABLE);
	
	/* ADC的常规配置 */
	ADC_CommonInitStructure.ADC_Mode = ADC_Mode_Independent;		//独立模式
	ADC_CommonInitStructure.ADC_Prescaler = ADC_Prescaler_Div2;		//84MHZ/2 = 42MHZ
	ADC_CommonInitStructure.ADC_DMAAccessMode = ADC_DMAAccessMode_Disabled;	//禁止MDA
	ADC_CommonInitStructure.ADC_TwoSamplingDelay = ADC_TwoSamplingDelay_5Cycles;	//ADC通道采用间隔
	ADC_CommonInit(&ADC_CommonInitStructure);

    // ADC初始化
    ADC_InitStructure.ADC_Resolution = ADC_Resolution_12b;//分辨率
    ADC_InitStructure.ADC_ScanConvMode = DISABLE;//禁止扫描	
    ADC_InitStructure.ADC_ContinuousConvMode = ENABLE;//连续转换模式
    ADC_InitStructure.ADC_ExternalTrigConvEdge = ADC_ExternalTrigConvEdge_None;//不需要外部触发
    ADC_InitStructure.ADC_DataAlign = ADC_DataAlign_Right;//数据右对齐
    ADC_InitStructure.ADC_NbrOfConversion = 1;//一次转换
    ADC_Init(ADC2, &ADC_InitStructure);

    //ADC2的采样通道6放入规则通道1中
    ADC_RegularChannelConfig(ADC2, ADC_Channel_6, 1, ADC_SampleTime_3Cycles);

    // 使能 ADC2
    ADC_Cmd(ADC2, ENABLE);

    // 初始化 ADC2
    ADC_SoftwareStartConv(ADC2);
}


//获得 ADC 值
uint16_t ADC_Read(void)
{
    // 开始转换
    ADC_SoftwareStartConv(ADC2);

    // 等到转换完成
    while (ADC_GetFlagStatus(ADC2, ADC_FLAG_EOC) == RESET);

    // 获取转换结果
    return ADC_GetConversionValue(ADC2);
}

        adc.h 

#ifndef _ADC_H
#define _ADC_H

//C文件中需要的其他的头文件
#include <stm32f4xx.h>
#include "sys.h"
#include "delay.h"


//C文件中定义的函数的声明
void adc_Init(void);
uint16_t ADC_Read(void);

#endif

MQ-7部分

        MQ7.c

#include "mq7.h"

#define CAL_PPM  10  // 校准环境中PPM值
#define RL	     10  // RL阻值
#define R0	     16  // R0阻值

u16 MQ7_Buffer[4];

void CO_Init(void)
{
	GPIO_InitTypeDef GPIO_InitStructure;
	
	RCC_AHB1PeriphClockCmd(RCC_AHB1Periph_GPIOA,ENABLE);//使能PA的时钟
	
	GPIO_InitStructure.GPIO_Pin = GPIO_Pin_6;			//PA6 模拟输入引脚
	GPIO_InitStructure.GPIO_Mode = GPIO_Mode_AN;		//输入模式
	GPIO_InitStructure.GPIO_PuPd = GPIO_PuPd_NOPULL;	//上下拉电阻:无上下拉电阻
	GPIO_Init(GPIOA, &GPIO_InitStructure);
	
	adc_Init();
}

//计算平均值
u16 ADC2_Average_Data(u8 ADC_Channel)
{
	u16 temp_val=0;
	u8 t;
	for(t=0;t<CO_READ_TIMES;t++)	//#define CO_READ_TIMES	10	定义烟雾传感器读取次数,读这么多次,然后取平均值

	{
		temp_val+=ADC_Read();	//读取ADC值
		delay_ms(5);
	}
	temp_val/=CO_READ_TIMES;//得到平均值
    return (u16)temp_val;//返回算出的ADC平均值
}

//float voltage = adc_value * (3.3 / 4096.0);  将ADC值转换为电压

/***********************************
		计算Rs的两种公式
float Rs = (3.3 * RL) / voltage - RL; 计算传感器的电阻  RL:负载电阻阻值
float RS = (3.3f - voltage) / voltage * RL;
************************************/

//float co_ppm = a * pow(Rs/R0, b); 使用校准曲线计算一氧化碳浓度
//a, b是MQ-7传感器模块校准曲线的系数.其值来源于MQ7的手册资料,a = 98.322, b = -1.458
//R0是器件在洁净空气中的电阻值,来自于MQ-7灵敏度特性曲线,R0 = RS / pow(CAL_PPM / 98.322, 1 / -1.458f);

//读取MQ7传感器的电压值
float CO_Get_Vol()
{
	u16 adc_value = 0;//这是从MQ-7传感器模块电压输出的ADC转换中获得的原始数字值,该值的范围为0到4095,将模拟电压表示为数字值
	float voltage = 0;//MQ-7传感器模块的电压输出,与一氧化碳的浓度成正比
	
	adc_value = ADC2_Average_Data(ADC_Channel_6);
	delay_ms(5);
	
    voltage  = (3.3/4096.0)*(adc_value);
	
	return voltage;
}

/*********************
// 传感器校准函数,根据当前环境PPM值与测得的RS电压值,反推出R0值。
// 经过个人测试,在空气中测出R0为16
float MQ7_PPM_Calibration()
{
	float RS = 0;
	float R0 = 0;
	RS = (3.3f - Smog_Get_Vol()) / Smog_Get_Vol() * RL;//RL	10  // RL阻值
	R0 = RS / pow(CAL_PPM / 98.322, 1 / -1.458f);//CAL_PPM  10  // 校准环境中PPM值
	return R0;
}
**********************/


// 根据公式计算CO_ppm
float MQ7_GetPPM()
{
	float RS = (3.3f - CO_Get_Vol()) / CO_Get_Vol() * RL;
	float ppm = 98.322f * pow(RS/R0, -1.458f);
	return  ppm;
}

        mq7.h

#ifndef _MQ7_H
#define _MQ7_H

//C文件中需要的其他的头文件
#include <stm32f4xx.h>
#include "sys.h"
#include "delay.h"
#include "math.h"
#include "adc.h"

#define SMOG_PIN46_R	1000			//烟雾传感器管脚4、6接出到地的电阻值
#define CO_READ_TIMES	10				//定义CO传感器读取次数,读这么多次,然后取平均值

//C文件中定义的函数的声明
void CO_Init(void);
u16 ADC2_Average_Data(u8 ADC_Channel);
float CO_Get_Vol(void);
//float MQ7_PPM_Calibration();
float MQ7_GetPPM(void);

#endif

主函数部分

        在主函数中调用 MQ7_GetPPM() 函数即可。

#include <stm32f4xx.h>
#include "sys.h"
#include <stdio.h>
#include "delay.h"
#include "uart.h"
#include "mq7.h"

//重定向fputc函数
int fputc(int ch, FILE *F)
{
	//通过串口1发送数据到PC
	USART_SendData(USART1, ch);
	while(USART_GetFlagStatus(USART1, USART_FLAG_TXE) == RESET);//等待发送数据完毕
	
	return ch;
}

u8 Smog_yu = 30;//Smog的阈值	

int main(void)
{
	float CO_ppm = 0;
	
	//确定系统定时器的工作频率  内核的工作频率/8 = 168MHz/8 = 21MHz
	SysTick_CLKSourceConfig(SysTick_CLKSource_HCLK_Div8);
	
	UART1_Config();//配置串口
	
	CO_Init();//配置CO模块
	
	while(1)
	{
		CO_ppm = MQ7_GetPPM();
		printf("CO_ppm:%.3f    CO阈值:%d\n",CO_ppm, CO_yu);
			
	}
	
	return 0;
}

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.coloradmin.cn/o/386940.html

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈,一经查实,立即删除!

相关文章

Leetcode.2373 矩阵中的局部最大值

题目链接 Leetcode.2373 矩阵中的局部最大值 Rating &#xff1a; 1331 题目描述 给你一个大小为 n x n的整数矩阵 grid。 生成一个大小为 (n - 2) x (n - 2)的整数矩阵 maxLocal&#xff0c;并满足&#xff1a; maxLocal[i][j]等于 grid中以 i 1行和 j 1列为中心的 3 x 3…

线段树模板初讲

线段树模板初讲 文章目录线段树模板初讲引入数据结构操作(以求和为例)pushupbuild单点操作&#xff0c;区间查询modifyquery区间操作&#xff0c;区间操作pushdownmodifyquery例题AcWing 1275. 最大数思路代码AcWing 243. 一个简单的整数问题2思路代码总结引入 线段树是算法竞…

systemV共享内存

systemV共享内存 共享内存区是最快的IPC形式。共享内存的大小一般是4KB的整数倍&#xff0c;因为系统分配共享内存是以4KB为单位的&#xff08;Page&#xff09;&#xff01;4KB也是划分内存块的基本单位。 之前学的管道&#xff0c;是通过文件系统来实现让不同的进程看到同一…

通用SQL查询分析器

技术&#xff1a;Java、JSP等摘要&#xff1a;本文主要针对当前很多软件都无法实现跨数据库、跨平台来执行sql语句而用户又仅需做一些基本的增删改查操作的矛盾&#xff0c;设计了一个能够跨平台跨数据库的软件。此软件是一个通用SQL查询分析器&#xff0c;利用java语言本身的跨…

rust中如何利用generic与PhantomData来实现更清晰的接口

前两天看了一个在 rustlang 中如何利用 generic 和 PhantomData 来让我们的 api 更加合理的视频&#xff0c; 当时看完就想写一篇相关内容的文章&#xff0c; 但是没有立即动手&#xff0c;一推迟&#xff0c;不出意外的忘了。这两天又接手了一个半成品的项目&#xff0c; 需要…

C++程序调用IsBadReadPtr或IsBadWritePtr引发内存访问违例问题的排查

目录 1、问题描述 2、VS中看不到有效的信息&#xff0c;尝试使用Windbg去分析 3、使用Windbg分析 4、最后 VC常用功能开发汇总&#xff08;专栏文章列表&#xff0c;欢迎订阅&#xff0c;持续更新...&#xff09;https://blog.csdn.net/chenlycly/article/details/12427258…

数据结构-链表-单链表(3)

目录 1. 顺序表的缺陷 2. 单链表 2.1 单链表的基本结构与接口函数 2.2 重要接口 创建新节点的函数&#xff1a; 2.2.1 尾插 2.2.2 头插 2.2.3 尾删 2.2.4 头删 2.2.5 查找 2.2.6 插入 2.2.7 删除 2.2.8 从pos后面插入 2.2.9 从pos后面删除 3. 链表的缺陷与优势&…

传输数据格式:JSON 异步加载

JSON JSON是一种传输数据的格式&#xff08;以对象为样板&#xff0c;本质上就是对象&#xff0c;但用途有区别&#xff0c;对象就是本地用的&#xff0c;json是用来传输的&#xff09;JSON.parse();string --> jsonJSON.stringify();json --> string json ---> {n…

关于安卓的一些残缺笔记

安卓笔记Android应用项目的开发过程Android的调试Android项目文档结构Intent的显式/隐式调用Activity的生命周期1个Activity界面涉及到生命周期的情况2个Activity界面涉及到生命周期的情况Android布局的理论讲解Activity界面布局ContentProvider是如何实现数据共享Android整体架…

mysql视图和存储过程

视图视图就是将一条sql查询语句封装起来&#xff0c;之后使用sql时&#xff0c;只需要查询视图即可&#xff0c;查询视图时会将这条sql语句再次执行一遍。视图不保存数据&#xff0c;数据还是在表中。SELECT 语句所查询的表称为视图的基表&#xff0c;而查询的结果集称为虚拟表…

ATTCK v10版本战术实战研究—持久化(一)

一、前言“在网络安全的世界里&#xff0c;白帽子与黑帽子之间无时无刻都在进行着正与邪的对抗&#xff0c;似乎永无休止。正所谓&#xff0c;道高一尺魔高一丈&#xff0c;巨大的利益驱使着个人或组织利用技术进行不法行为&#xff0c;花样层出不穷&#xff0c;令人防不胜防。…

udk2017环境搭建编译步骤

win10 64bit系统 1.参考minnowboard-max-rel-1-01-bin-releasenotes-for-binary-firmware-images.TXT MyWorkspace.rar 解压到c:\&#xff0c;参考txt中的git操作 3.复制ASL,NASM 到c&#xff1a;\ 安装vs2015 &#xff0c;勾选sdk 5.安装 python-2.7.10.amd64.msi&#xf…

【论文泛读】NeRF: Representing Scenes as Neural Radiance Fields for View Synthesis

NeRF: Representing Scenes as Neural Radiance Fields for View Synthesis | NeRF: 用于视图合成的神经辐射场的场景表示 | 2020年 出自文献&#xff1a;Mildenhall B, Srinivasan P P, Tancik M, et al. Nerf: Representing scenes as neural radiance fields for view synth…

泼辣修图Polarr5.11.4 版,让你的创意无限延伸

泼辣修图是一款非常实用的图片处理软件&#xff0c;它不仅拥有丰富的图片处理功能&#xff0c;而且还能够轻松地实现自定义操作。泼辣修图的操作界面非常简洁&#xff0c;功能也非常丰富&#xff0c;使用起来非常方便快捷。 泼辣修图拥有非常丰富的图片处理功能&#xff0c;包括…

【冲刺蓝桥杯的最后30天】day1

大家好&#x1f603;&#xff0c;我是想要慢慢变得优秀的向阳&#x1f31e;同学&#x1f468;‍&#x1f4bb;&#xff0c;断更了整整一年&#xff0c;又开始恢复CSDN更新&#xff0c;从今天开始逐渐恢复更新状态&#xff0c;正在备战蓝桥杯的小伙伴可以支持一下哦&#xff01;…

Rockchip Android13 GKI开发指南

Rockchip Android13 GKI开发指南 文章目录Rockchip Android13 GKI开发指南GKI介绍Google upstream kernel下载及编译Rockchip SDK中GKI相关目录介绍Rockchip GKI编译代码修改编译固件烧写KO编译及修改添加新的模块驱动的方法调试ko方法开机log确认uboot阶段Android阶段KO加载KO…

Java IO流详解

文章目录一、File1.1 构造方法1.2 文件操作 方法1.3 目录操作 方法1.4 文件检测 方法1.5 获取文件信息 方法1.6 应用练习二、IO 流2.1 InputStream 字节输入流 (读)&#x1f353;FileInputStream&#x1f353;BufferedInputStream2.2 OutputStream 字节输出流 (写)&#x1f34c…

【Redis】redis大key和大value的危害,如何处理?

前序 还记得上次和同事一起去面试候选人时&#xff0c;同事提了一个问题&#xff1a;Redis的大key有什么危害&#xff1f;当时候选人主要作答的角度是一个key的value较大时的情况&#xff0c;比如&#xff1a; 内存不均&#xff1a;单value较大时&#xff0c;可能会导致节点之…

[经验分享]gpt-3.5-Turbo|unity中实现http接口调用gpt新接口以及信息处理的实现案例分享

最近openAI发布了目前chatGPT所使用的模型gpt-3.5-Turbo&#xff0c;之前使用了text-davinci-003模型做了一个galgame的AI女友对话的demo。这次趁着新接口的发布&#xff0c;对这个demo也同步更新了模型调用的代码。本篇文章将分享一下&#xff0c;如何在unity里使用UnityWebRe…

记录一次PWM信号异常问题

问题我使用单片机输出PWM控制机械臂&#xff0c;但是控制过程中&#xff0c;机械臂总是会出现莫名的抽动。利用示波器测试PWM信号&#xff0c;发现信号正常。过程&#xff08;1&#xff09;在反复的测试过程中&#xff0c;队友提出&#xff0c;将示波器的地线放在左侧的GND波形…