AI for Science系列(二):国内首个基于AI框架的CFD工具组件!赛桨v1.0 Beta API介绍以及典型案例分享!

news2024/10/6 8:39:42

AI for Science被广泛认为是下一代科研范式,可以有效处理多维度、多模态、多场景下的模拟和真实数据,解决复杂推演计算问题,加速新科学问题发现[1] 。百度飞桨科学计算工具组件赛桨PaddleScience是国内首个公开且可应用于CFD(Computational Fluid Dynamics,计算流体力学)领域的工具,提供端到端应用API,致力于解决科学计算类任务。赛桨综合数学计算与物理数据相结合的处理方法,提供物理机理约束的PINNs(Physics Informed Neural Networks 物理信息神经网络)加速求解偏微分方程,解决计算流体力学中的仿真分析。本篇文章将重点介绍赛桨PaddleScience v1.0 Beta的典型案例及API使用示例。

赛桨提供的典型案例包含使用AI方法进行顶盖驱动方腔流(LDC)、达西流、2D&3D圆柱绕流的流场预测及涡激振动(VIV)。所有案例都基于泛化的微分方程、PINNs求解器、控制体、网络定义以及可视化等多种接口。下面我们将详细讲解赛桨PaddleScience v1.0 Beta中提供的计算流体力学案例及科学计算API的功能及使用。
PaddleScience v1.0 Beta产品全景

场景案例详解

前言

在流体领域,流体力学作为比较传统的物理学科,广泛应用于航空航天、船舶工业以及建筑、水利、能源等工程领域。

在航空工程和造船工业中,如飞行器和船舶的外形设计、操控性、稳定性等问题成为流体力学中广泛的研究课题,并促使流体力学得到了很大的发展。

在水利工程中,如大型水利枢纽和水力发电站的设计与建造、洪峰的预报工作、河流泥沙等问题都与流体力学紧密关联。

在动力机械制造工业中,如何提高水力及蒸汽涡轮、喷气发动机、压缩机和水泵等动力机械的性能,与叶片、导流片及其他零件设计形状的正确性有关。

随着工程问题的深入,流体力学已经逐渐与其他学科互相交叉渗透,形成新的交叉学科或边缘科学,如磁流体力学、物理-化学流体力学、生物流变学等等。

围绕不同的流体问题,当前流体力学分析主要基于数值计算。典型的方法有直接数值模拟 (DNS) 、雷诺平均方法 (RANS)、大涡模拟方法 (LES)、分离涡模拟 (DES) 以及格子玻尔兹曼法(LBM)等求解流体本构N-S (Navier-Stokes) 方程。由于物理问题的复杂度,数值方法往往有很多局限性,如计算效率等。PaddleScience的PINNs科学计算求解器,将物理信息融入神经网络,针对流体力学问题提供新的解决思路。本章节中,我们将介绍2D&3D圆柱绕流及涡激振动的案例,展示PaddleScience的基础科研能力。
不可压缩N-S(Navier-Stokes)方程

2D非定常圆柱绕流

圆柱绕流作为经典的CFD问题,在不同的雷诺数下,涡脱落产生的卡门涡街类型不同,是能够综合体现层流、湍流过渡的典型问题。针对该问题,采用PINNs方法,并基于连续时间的2D不可压、非定常NS方程作为约束深度学习神经网络的物理规则,将传统的CFD求解转换为神经网络参数的优化问题。同时,为了加速训练的收敛时间,提高预测精度,采用半监督方式,从开源CFD工具OpenFOAM的结果中记录边界位置处约200个测点在不同时刻的流场信息,与N-S方程、初边值条件等共同形成了网络优化的损失函数。对雷诺数Re=100工况,定义约110W个时空训练点(t, x, y),并采用NVIDIA V100-32G单卡训练约8小时,结果如下图所示。基于PINNs方法构建的网络能够完整的模拟卡门涡的周期性脱落,且预测的流场结果与OpenFOAM相对误差小于5%(除边界层中个别点外),可满足工程需求。
图3 Re=100的2D圆柱绕流结果
(左:OpenFOAM结果,右:PINNs方法结果)

同时,基于训练完成的模型,利用推理功能,8ms内即可完成百万级空间位置在30个时间步的结果预测,相比于同样网格数量且固定求解配置的OpenFOAM计算过程,速度提升近12000倍,非常利于后期在线评估、优化等工程应用。

案例链接:
https://github.com/PaddlePaddle/PaddleScience/tree/develop/examples/cylinder/2d_unsteady_continuous

3D非定常圆柱绕流

除2D圆柱绕流外,赛桨PaddleScience同时提供3D圆柱绕流案例,基于PINNs方法,求解3D非定常不可压缩Navier-Stokes方程,完成了无模化Re=100的圆柱绕流问题求解。在该问题中,采用OpenFOAM的结果作为基准,选择流场稳定的相对0时刻,并记录有限时间内特定测点的数据。采用离散时间的PINNs神经网络进行训练,其模型数量与所选取的时间步长相关,在t_start至t_end内,定义离散时间步长dt,采用(t_end-t_start)/(T*dt)个模型进行训练,其中T为涡脱周期。对比OpenFOAM的理论值,相对误差在5%以内。x轴上的流场速度变化如下:
3D圆柱绕流x轴流场速度

案例链接:
https://github.com/PaddlePaddle/PaddleScience/tree/develop/examples/cylinder/3d_unsteady_discrete

涡激振动

涡激振动(VIV)是一种典型的流致振动,是流体经过结构后稳定涡脱频率与结构固有频率综合的流固耦合问题。是海洋工程中立管、输油管路等大跨度结构的主要损伤源,但由于结构复杂,无法有效测量刚度、阻尼等本构特征,导致损伤探测及预防难度较大。相比基于PINNs方法实现2D圆柱绕流正问题分析,解决“反问题”是PINNs方法的一个亮点,可通过部分实验数据“逆向”预测流场中结构的刚度、阻尼等本构特征,从而对实际工程中的复杂结构的疲劳损伤及破坏的预测及预防提出指导。

从工程落地的角度,赛桨 PaddleScience 从“半实物仿真”的技术路线出发,构建了涡激振动试验台架以及模型驱动试验装备的电控闭环,创新性地探索并论证深度学习模型与物理装备的虚实结合的技术可行性。

通过对涡激振动开展分阶段分析,首先基于加速度计及激光设备等传感器采集结构振动振幅与结构升力,对系统进行弹簧-振子单自由度等效。基于实测的160组位移及受力数据,训练过程中最小化“振幅”、“升力”、“方程”等共同组成的损失函数。采用V100-16G单卡训练约0.5h,预测结果如下图(右上)。基于PINNs预测的结构振动振幅、结构升力结果与试验数据的相对误差均在2%以内。同时基于“反问题”方式分析得到的结构刚度、阻尼分别为1.092964与4.1e-6,相比真实值1.09与0,相对误差均小于2%。

涡激振动主要基于试验与深度学习模型结合的方式进行,通过构建风洞试验装备,在第一阶段完成结构刚度、阻尼的预测,在第二阶段则基于得到的结构刚度、阻尼等属性,进行流场重构以及升阻力的预测。过程中基于赛桨提供的泛化PDE接口,对涡激振动中流固耦合方程也重新进行了整合,定义新的网络与求解过程,具体流程如下图所示。
VIV试验及深度学习模型联合验

案例链接:
https://github.com/PaddlePaddle/PaddleScience/tree/develop/examples/fsi

API功能及使用示例

上述案例充分利用了赛桨PaddleScience v1.0 Beta提供的API。本部分将着重介绍涉及的主要API接口及使用示例方法。
PaddleScience科学计算工具组件设计架构

科学计算问题定义

科学计算问题定义包含三部分:方程定义(PDE)、计算域定义(Geometry)、初边值条件定义(IC/BC)。下图展示了如何定义在一个方形区域内求解二维非定常Navier-Stokes方程问题。具体而言,该问题数学上由(图b) 定义,包含方程、初边值条件及计算域信息,代码上每一条信息由相应接口描述(图a及图c)。图中展示了一部分数学信息和接口的对应关系,该对应关系由同样的颜色方框表示。
PaddleScience科学计算问题定义

本章节将介绍关于科学计算问题定义相关的API。

偏微分方程(PDE)

赛桨支持调用预置方程接口及自定义方程接口。

**预置方程接口:**方程定义内置在赛桨中,用户直接调用即可,仅需配置相关参数(如维度、物理属性等)。

**自定义方程接口:**用户使用 Python SymPy 定义自变量、因变量及方程,通过“add_equation”接口将方程加入PDE模块。
在这里插入图片描述

对于高维偏微分方程,连续时间方法将时间和空间均视为网络的输入;离散时间方法首先使用数值(隐式)方法对时间离散,得到仅包含空间变量的方程,进而使用PINNs方法求解该方程,3D N-S方程及使用隐式离散方法得到的方程如下,其中 n 时刻的状态(3个方向的速度)已知,求解n+1时刻的状态(3个方向的速度)。
使用隐式方法对时间离散后得到的方程

如下代码展示如何定义一个非定常N-S方程,以及如何使用连续时间方法和离散时间方法,进行方程离散。仅需通过改变参数 “time_method” 的取值即可选取对应的方法。
在这里插入图片描述

计算域(Geometry)

赛桨提供了常用的计算域形状,如立方体、立方体除去圆柱等几何外形,及VTK 可视化支持,同时提供 " add_boundary " 接口定义边界。

图片

初边值条件(IC/BC)
边值条件模块预置了Dirichlet/Neumann/Robin边值条件,仅需定义边值条件,并通过 “set_bc” 接口将其指定到对应边界即可。对于PDE,以类似方式增加了初值条件模块。
图片

深度学习方法求解模块

上一章节介绍了如何使用赛桨定义科学计算问题,本章节继续介绍深度学习方法求解上述科学计算问题所需使用到的模块。

网络(Network)
赛桨支持全连接网络(FC)以及初始化网络权重的接口initialize,支持从文件读取权重进行初始化,以及使用飞桨预置的初始化函数(paddle.nn.initializer)进行初始化。
在这里插入图片描述

损失函数(Loss)
赛桨提供了灵活的Loss设置方式,允许通过设置独立的权重系数配置多任务Loss (Loss = w_1 * Loss_equation + w_2 * Loss_ic+ w_3 * loss_bc +w_4 * Loss_data)。

图片

优化器(Optimizer)
赛桨支持Adam优化器。

图片

求解器(Solver)及求解模式
求解器提供了控制功能,在训练和推理阶段可以分别使用。
图片

启动自动并行模式

使用自动并行技术实现分布式计算内嵌在赛桨中,无需特别设置,使用如下代码运行程序即可实现数据自动并行。
在这里插入图片描述

启动动态图/静态图/自动微分模式

赛桨后端支持动态图和静态图模式,可以通过简单的接口进行切换。另外,在单机静态图模式下,赛桨提供接口启用高阶自动微分。
在这里插入图片描述
下一期我们将对支持PaddleScience的底层框架技术,如自动微分机制、编译器等功能进行详细介绍,敬请期待~

引用:
[1]《IDC perspective:AI for Science市场研究》报告正式启动.
https://mp.weixin.qq.com/s/gtEbuSULI5fzCIvbDKhkfA
拓展阅读:
1.《AI+Science系列(一):飞桨加速CFD(计算流体力学)原理与实践》
2.赛桨PaddleScience v1.0 Beta:基于飞桨核心框架的科学计算通用求解器

相关地址:
1.飞桨AI for Science共创计划:
https://www.paddlepaddle.org.cn/science
2.飞桨PPISG-Science小组:
https://www.paddlepaddle.org.cn/specialgroupdetail?id=9

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.coloradmin.cn/o/385707.html

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈,一经查实,立即删除!

相关文章

通过工厂模式实现SpringBoot+MQTT-订阅与消费

引言 Spring Boot 是一款用于构建基于 Spring 框架的快速应用程序的开源框架。它的目标是简化 Spring 应用程序的开发和部署过程,Spring Boot 通过提供一些默认配置和自动配置,可以让开发者更快的创建一个独立的、产品级别的 Spring 应用程序。 MQTT 是…

pathon Django的关系映射

一对一 【创建】 一对一是表示现实事物间存在的一对一的对应关系。特殊字段选项 【必须】 on_delete - 级联删除 更多参考模型字段参考 | Django 文档 | Django使用oto示例: 1、先创建oto应用,然后到setting.py文件注册应用2、创建oto模型类3、创建…

【人工智能 AI】机器学习快速入门教程(Google)

目录 机器学习术语 标签 特性 示例 模型 回归与分类 深入了解机器学习:线性回归 深入了解机器学习:训练和损失 平方损失函数:一种常用的损失函数 机器学习术语 预计用时:8 分钟 什么是(监督式&#xff…

蚁群算法再优化:combine aco algorithm with Sarsa in RL

蚁群算法再优化:combine aco algorithm with Sarsa in RL蚁群算法、Sarsa介绍和TSP问题介绍TSP和Sarsaaco algorithm具体的改进和代码改进说明部分代码数值实验结论分析参考文献蚁群算法、Sarsa介绍和TSP问题介绍 在进行蚁群算法优化介绍之前,笔者先将涉…

Apache Pulsar 云原生消息中间件之王

一、简介 pulsar,消息中间件,是一个用于服务器到服务器的消息系统,具有多租户、高性能等优势。 pulsar采用发布-订阅的设计模式,producer发布消息到topic,consumer订阅这些topic处理流入的消息,并当处理完…

OIDC OAuth2.0 认证协议最佳实践系列 02 - 授权码模式(Authorization Code)接入 Authing

在上一篇文章OIDC & OAuth2.0 认证协议最佳实践系列 02 - 授权码模式(Authorization Code)接入 Authing中,我们整体介绍 OIDC / OAuth2.0 协议,本次我们将重点围绕授权码模式(Authorization Code)以及接…

RabbitMQ第一讲

目录 一、RabbitMQ-01 1.1 MQ概述 1.2 MQ的优势和劣势 1.2.1 优势 1.2.2 劣势 1.2.3 MQ应用场景 1.2.4 常用的MQ产品 1.3 RabbitMQ的基本介绍 1.3.1 AMQP介绍 1.3.2 RabbitMQ基础架构 1.3.3 RabbitMQ的6种工作模式 ​编辑 1.4 AMQP和JMS 1.4.1 AMQP 1.4.2 JMS …

00后跨专业学软件测试,斩获8.5K高薪逆袭职场

我想说的第一句:既然有梦想,就应该去拼搏还记得,我大学毕业前,就已经暗下决心到xxx培训机构接受培训。那个时候,没有任何海同公司的人主动找我或者联系过我,我是自己在网上发现了xxxx培训机构的&#xff01…

PLC实验—西门子S7 1200 PID控制步进电机转速

PLC实验—西门子S7 1200 PID控制步进电机转速 严格讲并不是PID控制,因为并不是并不研究这个方向,研二又比较忙,时间限制只加了比例系数 这里只是抛砖引玉,希望大家可以进一步完善补充 思路 大体思路如下,根据超声波…

三八节买什么数码好物?三八女神节实用不吃灰的数码好物推荐

三八节快到了,在这个小节日里,有哪些实用性强的数码好物值得入手呢?针对这个问题,我来给大家推荐几款实用性超强的数码好物,一起来看看吧。 一、蓝牙耳机 推荐产品:南卡小音舱 参考价:239 南…

Python中Opencv和PIL.Image读取图片的差异对比

近日,在进行深度学习进行推理的时候,发现不管怎么样都得不出正确的结果,再仔细和正确的代码进行对比了后发现原来是Python中不同的库读取的图片数组是有差异的。 image np.array(Image.open(image_file).convert(RGB)) image cv2.imread(…

【持续学习引导:pansharpening】

A continual learning-guided training framework for pansharpening (一种持续学习引导的全色锐化训练框架) 基于监督学习的全色锐化方法自出现以来一直受到批评,因为它们依赖于尺度移位假设,即这些方法在降低分辨率时的性能通…

IntelliJ IDEA如何整合Maven图文教程详解

Maven 1.Maven简述 Maven是一个构建工具,服务与构建.使用Maven配置好项目后,输入简单的命令,如:mvn clean install,Maven会帮我们处理那些繁琐的任务. Maven是跨平台的. Maven最大化的消除了构建的重复. Maven可以帮助我们标准化构建过程.所有的项目都是简单一致的,简化了学习…

ChatGPT能完全取代软件开发吗,看看它怎么回答?

最近网上一直疯传,ChatGPT 最可能取代的 10 种工作。具体包括①、技术类工作:程序员、软件工程师、数据分析师②、媒体类工作:广告、内容创作、技术写作、新闻③、法律类工作:法律或律师助理④、市场研究分析师⑤、教师⑥、金融类…

如何提高推广邮件的发送成功率?

随着经济的发展,国际之间的贸易往来越加频繁,很多外贸企业需要发送大量的商业推广邮件,来获得销售订单开拓公司业务市场。 随之而来的问题也是越来越多,给众多的外贸企业带来诸多的困扰。外贸企业在发送推广邮件中究竟会遇到什么问…

2.4G收发一体芯片NRF24L01P跟国产软硬件兼容 SI24R1对比

超低功耗高性能 2.4GHz GFSK 无线收发器芯片Si24R1,软硬件兼容NRF24L01P. Si24R1 是一颗工作在 2.4GHz ISM 频段,专为低功耗无线场合设计,集成嵌入式ARQ 基带协议引擎的无线收发器芯片。工作频率范围为 2400MHz-2525MHz,共有 126个…

Nginx网络服务

目录 1.Nginx基础 1.Nginx和Apache的差异 2.Nginx和Apache的优缺点比较 3.编译安装nginx服务 2.认识Nginx服务的主配置文件 nginx.conf 1.全局配置 2.I/O事件配置 3.HTTP设置 4.访问状态统计配置 5.基于授权密码的访问控制 6.基于客户端的访问控制 7.基于域名的ng…

SpringCloud简单介绍

文章目录1. 开源组件2. CAP原则1. 开源组件 功能springcloud netflixspringcloud alibabaspringcloud官方其他服务注册与发现eurekanacosconsulzookeeper负载均衡ribbondubbo服务调用openFeigndubbo服务容错hystrixsentinel服务网关zuulgateway服务配置的同一管理cofig-server…

图论初入门

目录 一、前言 二、图的概念 三、例题及相关概念 1、全球变暖(2018年省赛,lanqiao0J题号178) 2、欧拉路径 3、小例题 4、例题(洛谷P7771) 一、前言 本文主要讲了树与图的基本概念,图的存储、DFS遍历…

pytorch训练第一个项目VOC2007分割

一、环境 condapytorch1.2.0cuda10.0pycharm 二、训练内容 数据集:VOC2007 网络:U-net 功能:分割图像分类 三、步骤 安装软件、框架、包、cuda(不安用cpu跑也可以),下载数据集、代码、权重文件等。。…