CEC2020:鱼鹰优化算法(Osprey optimization algorithm,OOA)求解CEC2020(提供MATLAB代码

news2024/11/24 14:34:51

一、鱼鹰优化算法简介

鱼鹰优化算法(Osprey optimization algorithm,OOA)由Mohammad Dehghani 和 Pavel Trojovský于2023年提出,其模拟鱼鹰的捕食行为。
在这里插入图片描述

鱼鹰是鹰形目、鹗科、鹗属的仅有的一种中型猛禽。雌雄相似。体长51-64厘米,体重1000-1750克。头部白色,头顶具有黑褐色的纵纹,枕部的羽毛稍微呈披针形延长,形成一个短的羽冠。头的侧面有一条宽阔的黑带,从前额的基部经过眼睛到后颈部,并与后颈的黑色融为一体。上体为暗褐色,略微具有紫色的光泽。下体为白色,胸部的暗色纵纹和飞羽,以及尾羽上相间排列的横斑均极为醒目。虹膜淡黄色或橙黄色,眼周裸露皮肤铅黄绿色,嘴黑色,蜡膜铅蓝色,脚和趾黄色,爪黑色。

鱼鹰栖息于湖泊、河流、海岸或开阔地,尤其喜欢在山地森林中的河谷或有树木的水域地带活动。常见在江河、湖沼及海滨一带飞翔,一见水中有饵,就直下水面,用脚掠之而去。趾具锐爪,趾底遍生细刺,外趾复能由前向后反转,这些都很适于捕鱼。在天气晴朗之日,盘旋于水面上空,定点后俯冲而下,再将捕获的鱼带至岩石、电杆、树上等地方享用。巢常营于海岸或岛屿的岩礁上。主要以鱼为食,有时也捕食蛙、蜥蜴、小型鸟类等其他小型陆栖动物。除了南极和北极,亚洲、北美洲等各大洲均有分布。

1.1鱼鹰优化算法原理

鱼鹰优化算法包含两个阶段:第一阶段为鱼鹰识别鱼的位置并捕鱼(全局勘探), 第二阶段为将鱼带到合适的位置( 局部开采),其详细设计如下:

1.1.1 种群初始化

采用下式随机初始化鱼鹰种群:
X = [ X 1 ⋮ X i ⋮ X N ] N × m = [ x 1 , 1 ⋯ x 1 , j ⋯ x 1 , m ⋮ ⋱ ⋮ ⋱ ⋮ x i , 1 ⋯ x i , j ⋯ x i , m ⋮ ⋱ ⋮ ⋱ ⋮ x N , 1 ⋯ x N , j ⋯ x N , m ] N × m , x i , j = l b j + r i , j ⋅ ( u b j − l b j ) , i = 1 , 2 , … , N , j = 1 , 2 , … , m , \begin{array}{c} X=\left[\begin{array}{c} X_{1} \\ \vdots \\ X_{i} \\ \vdots \\ X_{N} \end{array}\right]_{N \times m}=\left[\begin{array}{ccccc} x_{1,1} & \cdots & x_{1, j} & \cdots & x_{1, m} \\ \vdots & \ddots & \vdots & \ddots & \vdots \\ x_{i, 1} & \cdots & x_{i, j} & \cdots & x_{i, m} \\ \vdots & \ddots & \vdots & \ddots & \vdots \\ x_{N, 1} & \cdots & x_{N, j} & \cdots & x_{N, m} \end{array}\right]_{N \times m}, \\ x_{i, j}=l b_{j}+r_{i, j} \cdot\left(u b_{j}-l b_{j}\right), i=1,2, \ldots, N, j=1,2, \ldots, m, \end{array} X= X1XiXN N×m= x1,1xi,1xN,1x1,jxi,jxN,jx1,mxi,mxN,m N×m,xi,j=lbj+ri,j(ubjlbj),i=1,2,,N,j=1,2,,m,
其中,N为鱼鹰的数量,m为问题的维度,初始化位置后依据优化问题计算适应度值:
F = [ F 1 ⋮ F i ⋮ F N ] N × 1 = [ F ( X 1 ) ⋮ F ( X i ) ⋮ F ( X N ) ] N × 1 F=\left[\begin{array}{c} F_{1} \\ \vdots \\ F_{i} \\ \vdots \\ F_{N} \end{array}\right]_{N \times 1}=\left[\begin{array}{c} F\left(X_{1}\right) \\ \vdots \\ F\left(X_{i}\right) \\ \vdots \\ F\left(X_{N}\right) \end{array}\right]_{N \times 1} F= F1FiFN N×1= F(X1)F(Xi)F(XN) N×1

1.1.2 全局勘探(第一阶段:位置识别和捕鱼)

鱼鹰是强大的猎人,由于其强大的视力,能够探测到水下鱼类的位置。在确定鱼的位置后,他们攻击它并通过潜入水下捕猎鱼。OOA中种群更新的第一阶段是基于对鱼鹰这种自然行为的模拟而建模的。对鱼鹰攻击鱼类进行建模会导致鱼鹰在搜索空间中的位置发生显著变化,这增加了OOA在识别最优区域和逃离局部最优方面的探索能力。在OOA设计中,对于每只鱼鹰,搜索空间中具有较好目标函数值的其他鱼鹰的位置被视为水下鱼类。每只鱼鹰的位置使用下式指定。
F P i = { X k ∣ k ∈ { 1 , 2 , … , N } ∧ F k < F i } ∪ { X best  } \boldsymbol{F P _ { i }}=\left\{X_{k} \mid \boldsymbol{k} \in\{1,2, \ldots, N\} \wedge \boldsymbol{F}_{k}<\boldsymbol{F}_{i}\right\} \cup\left\{\boldsymbol{X}_{\text {best }}\right\} FPi={Xkk{1,2,,N}Fk<Fi}{Xbest }
其中, F P i F P _ { i } FPi为第i只鱼鹰的位置集合, X best  {X}_{\text {best }} Xbest 为最佳鱼鹰的位置。
鱼鹰随机检测其中一条鱼的位置并攻击它。基于鱼鹰向鱼的运动模拟,使用下式计算相应鱼鹰的新位置。这个新位置,如果它的目标函数的值更好,则替换鱼鹰的先前位置。
x i , j P 1 = x i , j + r i , j ⋅ ( S F i , j − I i , j ⋅ x i , j ) , x i , j P 1 = { x i , j P 1 , l b j ≤ x i , j P 1 ≤ u b j ; l b j , x i , j P 1 < l b j ; u b j , x i , j P 1 > u b j . X i = { X i P 1 , F i P 1 < F i ; X i ,  else  , \begin{array}{l} x_{i, j}^{P 1}=x_{i, j}+r_{i, j} \cdot\left(S F_{i, j}-I_{i, j} \cdot x_{i, j}\right), \\ x_{i, j}^{P 1}=\left\{\begin{array}{ll} x_{i, j}^{P 1}, & l b_{j} \leq x_{i, j}^{P 1} \leq u b_{j} ; \\ l b_{j}, & x_{i, j}^{P 1}<l b_{j} ; \\ u b_{j}, & x_{i, j}^{P 1}>u b_{j} . \end{array}\right. \\ X_{i}=\left\{\begin{array}{l} X_{i}^{P 1}, F_{i}^{P 1}<F_{i} ; \\ X_{i}, \text { else }, \end{array}\right. \\ \end{array} xi,jP1=xi,j+ri,j(SFi,jIi,jxi,j),xi,jP1= xi,jP1,lbj,ubj,lbjxi,jP1ubj;xi,jP1<lbj;xi,jP1>ubj.Xi={XiP1,FiP1<Fi;Xi, else ,
其中, x i , j P 1 x_{i, j}^{P 1} xi,jP1为第i只鱼鹰在第一阶段时,其第j维的新位置, F i , j P 1 F_{i, j}^{P 1} Fi,jP1是其对应的适应度值。 S F i , j S F_{i, j} SFi,j为[0,1]之间的随机数, I i , j I_{i, j} Ii,j为集合{1,2}中的随机数。

1.1.3 局部开采(第二阶段:将鱼带到合适的位置)

捕食鱼后,鱼鹰将其带到合适(对他来说安全)的位置,并在那里吃。OOA中更新种群的第二阶段是基于鱼鹰这种自然行为的模拟建模的。将鱼带到合适位置的建模导致鱼鹰在搜索空间中的位置发生微小变化,从而导致 OOA 在本地搜索中的开发能力增加,并在发现的解决方案附近收敛到更好的解决方案。在OOA的设计中,为了模拟鱼鹰的这种自然行为,首先,针对种群的每个成员,使用下式计算一个新的随机位置作为“适合吃鱼的位置”。然后,如果目标函数的值在这个新位置得到改善,则替换相应鱼鹰的先前位置。
x i , j P 2 = x i , j + l b j + r ⋅ ( u b j − l b j ) t , i = 1 , 2 , … , N , j = 1 , 2 , … , m , t = 1 , 2 , … , T , x i , j P 2 = { x i , j P 2 , l b j ≤ x i , j P 2 ≤ u b j ; l b j , x i , j P 2 < l b j u b j , x i , j P 2 > u b j , X i = { X i P 2 , F i P 2 < F i ; X i ,  else  , \begin{array}{c} x_{i, j}^{P 2}=x_{i, j}+\frac{l b_{j}+r \cdot\left(u b_{j}-l b_{j}\right)}{t}, i=1,2, \ldots, N, j=1,2, \ldots, m, t=1,2, \ldots, T, \\ x_{i, j}^{P 2}=\left\{\begin{array}{l} x_{i, j}^{P 2}, l b_{j} \leq x_{i, j}^{P 2} \leq u b_{j} ; \\ l b_{j}, x_{i, j}^{P 2}<l b_{j} \\ u b_{j}, x_{i, j}^{P 2}>u b_{j}, \end{array}\right. \\ X_{i}=\left\{\begin{array}{l} X_{i}^{P 2}, F_{i}^{P 2}<F_{i} ; \\ X_{i}, \text { else }, \end{array}\right. \end{array} xi,jP2=xi,j+tlbj+r(ubjlbj),i=1,2,,N,j=1,2,,m,t=1,2,,T,xi,jP2= xi,jP2,lbjxi,jP2ubj;lbj,xi,jP2<lbjubj,xi,jP2>ubj,Xi={XiP2,FiP2<Fi;Xi, else ,
其中, x i , j P 2 x_{i, j}^{P 2} xi,jP2为第i只鱼鹰在第二阶段时,其第j维的新位置, F i , j P 2 F_{i, j}^{P 2} Fi,jP2是其对应的适应度值。 r r r为[0,1]之间的随机数, t t t T T T分别为当前迭代次数和最大迭代次数。

1.2算法描述

在这里插入图片描述

1.3算法流程

在这里插入图片描述

1.4参考文献

Dehghani Mohammad, Trojovský Pavel.Osprey optimization algorithm: A new bio-inspired metaheuristic algorithm for solving engineering optimization problems[J].Frontiers in Mechanical Engineering,2023,8.

二、CEC2020简介

CEC2020共有10个测试函数测试维度包含:2D、5D、10D、15D、20D。CEC2020测试问题随着维度的增加求解极其困难。

在这里插入图片描述

三、求解结果

完整代码添加博客下方博主微信:djpcNLP123
将鱼鹰优化算法OOA运用于求解CEC2020中10个函数,其中每个测试函数可以选择的维度分别有:2D、5D、10D、15D、20D。增大迭代次数,鱼鹰优化算法OOA的求解效果更佳。本例测试函数维度均为10D(可根据自己需求调整),种群大小为50,最大迭代次数为100次。

close all
clear
clc
MaxFes = 50;%迭代次数
VarNumber = 10;%维度 2/5/10/15/20
nPop = 50;%种群大小
VarMin=-100;%下限
VarMax=100;%上限
fitnessfunc=str2func('cec20_func');
Function_name=1;%测试函数1-10
[Best_Fit,Best_Pos,Curve]=OOA(nPop,MaxFes,VarMin,VarMax,VarNumber,CostFunction);  
figure
plot(Curve,'g','linewidth',2.5)
xlabel('迭代次数')
ylabel('适应度值')
legend('OOA')
title(strcat('CEC2020-F',num2str(Function_name)))

部分求解结果:

F1:

在这里插入图片描述

F2:

在这里插入图片描述

F3:

在这里插入图片描述

F4:

在这里插入图片描述

F5:

在这里插入图片描述

四、参考代码

完整代码添加博客下方博主微信:djpcNLP123

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.coloradmin.cn/o/385597.html

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈,一经查实,立即删除!

相关文章

巾帼绽芬芳 一起向未来(中篇)

编者按&#xff1a;为了隆重纪念纪念“三八”国际妇女节113周年&#xff0c;快来与你全方位、多层次分享交流“三八”国际妇女节的前世今生。分上篇&#xff08;节日简介、节日发展和节日意义&#xff09;、中篇&#xff08;节日活动宗旨和世界各国庆祝方式&#xff09;和下篇&…

mybatis的增删改查运用

目录 一、总览图 二、运用 一、总览图 代码总览图 数据库总览图 二、运用 数据库的一张表对应一个封装类&#xff0c;一个mapper接口&#xff0c;一个mapper.xml文件&#xff0c; 一个实现类。表中的增删改查都在里面编写 但是配置xml文件整个数据库只要一个就好了 1.…

路由器与交换机的区别(基础知识)

文章目录交换机路由器路由器和交换机的区别&#xff08;1&#xff09;工作层次不同&#xff08;2&#xff09;数据转发所依据的对象不同&#xff08;3&#xff09;传统的交换机只能分割冲突域&#xff0c;不能分割广播域&#xff1b;而路由器可以分割广播域&#xff08;4&#…

软件大战升级,通用汽车与Qt达成合作,增强车内体验

从智能汽车产业现状来看&#xff0c;围绕软件而展开的争夺战已经打响。 英伟达首席执行官黄仁勋曾预测&#xff0c;未来四年内新车以成本价销售将不再是“天方夜谭”&#xff0c;因为利润将来自软件。 比如&#xff0c;英伟达与奔驰的合作&#xff0c;就将首次采用功能订阅的…

docker安装及命令使用

目录 1. Docker版本介绍 2. 创建Docker存储库 3. 安装docker软件包 4. Docker命令补全 6.Docker命令介绍 7. Docker镜像管理 7.1 列出本地镜像 7.2 搜索镜像 7.3 下载镜像 7.4 查看镜像 7.5 删除镜像 7.6 导出镜像 7.7 导入镜像 7.8 镜像改名 8. 容器管理 8.1 容…

再学C语言41:变长数组(VLA)

处理二维数组的函数&#xff1a;数组的行可以在函数调用时传递&#xff0c;但是数组的列只能被预置在函数内部 示例代码&#xff1a; #define COLS 4 int sum(int arr[][COLS], int rows) {int r;int c;int temp 0;for(r 0; r < rows; r){for(c 0; c < COLS; c){tem…

每个Android开发都应需知的性能指标~

无论你是发布一个新的 Android 应用&#xff0c;还是希望提高现有应用的性能&#xff0c;你都可以使用 Android 应用性能指标来帮助你。 在这篇文章中&#xff0c;我将解释什么是 Android 应用性能指标&#xff0c;并列出8个需要考虑跟踪的维度和建议的基线。 什么是 Android…

【LEAP模型】能源环境发展、碳排放建模

本次内容突出与实例结合&#xff0c;紧密结合国家能源统计制度及《省级温室气体排放编制指南》&#xff0c;深入浅出地介绍针对不同级别研究对象时如何根据数据结构、可获取性、研究目的&#xff0c;构建合适的能源生产、转换、消费、温室气体排放&#xff08;以碳排放为主&…

【NLP相关】深度学习领域不同编程IDE对比

❤️觉得内容不错的话&#xff0c;欢迎点赞收藏加关注&#x1f60a;&#x1f60a;&#x1f60a;&#xff0c;后续会继续输入更多优质内容❤️&#x1f449;有问题欢迎大家加关注私戳或者评论&#xff08;包括但不限于NLP算法相关&#xff0c;linux学习相关&#xff0c;读研读博…

死锁相关介绍【内含哲学家就餐问题】

死锁 死锁是这样一种情形&#xff1a;多个线程同时被阻塞&#xff0c;它们中的一个或者全部都在等待某个资源被释放。由于线程被无限期地阻塞&#xff0c;因此程序不可能正常终止。 场景1&#xff1a;一个线程&#xff0c;一把锁 一个线程&#xff0c;一把锁&#xff0c;线程…

【Linux】孤儿进程

在Linux中&#xff0c;如果子进程运行时&#xff0c;父进程因为某些原因先行终止&#xff0c;就称该子进程为孤儿进程。 我们编写如下代码&#xff1a; 子进程一直在运行&#xff0c;父进程运行一段时间后自动终止。运行该程序观察现象&#xff1a; 最开始时&#xff0c;子进程…

Unity 命令行发Android包

unity.exe 只允许存在一个 如果开了ide 或者之前的没关掉 就不能运行了 C: cd C:\Program Files\Unity\Editor\2021.3.6f1c1\Editor\ Unity.exe ^ -quit ^ -batchmode ^ -projectPath E:\puerts\UnityJenkins ^ -executeMethod Main.BuildC#代码放到任意Editor目录里 using S…

【linux】进程信号——信号的产生

进程信号一、信号概念1.1 信号理解二、产生信号2.1 通过键盘产生信号2.2 捕捉信号自定义signal2.3 系统调用接口产生信号2.3.1 向任意进程发送任意信号kill2.3.2 给自己发送任意信号raise2.3.3 给自己发送指定信号abort2.3.4 理解2.4 硬件异常产生信号2.4.1 除0异常2.4.2 野指针…

ACM-大一训练第三周(Floyd算法+并查集算法专题训练)

&#x1f680;write in front&#x1f680; &#x1f4dd;个人主页&#xff1a;认真写博客的夏目浅石.CSDN &#x1f381;欢迎各位→点赞&#x1f44d; 收藏⭐️ 留言&#x1f4dd;​ &#x1f4e3;系列专栏&#xff1a;ACM周训练题目合集.CSDN &#x1f4ac;总结&#xff1a…

五、Bean的作用域

1 singleton 默认情况下&#xff0c;Spring的IoC容器创建的Bean对象是单例的。测试&#xff1a; package com.power.spring6.bean;public class SpringBean {public SpringBean() {System.out.println("无参数构造方法执行了");} }<?xml version"1.0"…

Ubuntu中使用Synaptic进行包管理

Synaptic概况 Synaptic 是一个轻量级的 apt 软件包管理器系统的 GUI 前端&#xff0c;所有你可以在终端中使用 apt-get 命令来做的事&#xff0c;都可以通过 Synaptic 来实现。优势 图形化安装界面&#xff0c;同时可以安装配置相关依赖&#xff0c;避免由于依赖问题导致的各类…

【c++】2023杭州月薪个税计算(chatGPT帮忙加注释)

参考信息 杭州市的个人所得税起征点是每月5000元。 个人所得税税率标准&#xff1a; 1、工资范围在1-5000元之间的&#xff0c;包括5000元&#xff0c;适用个人所得税税率为0%; 2、工资范围在5000-8000元之间的&#xff0c;包括8000元&#xff0c;适用个人所得税税率为3%; 3、工…

SpringBoot3.0 + SpringSecurity6.0+JWT

JWT_SpringSecurity SpringBoot3.0 SpringSecurity6.0JWT Spring Security 是 Spring 家族中的一个安全管理框架。 一般Web应用的需要进行认证和授权。 认证&#xff1a;验证当前访问系统的是不是本系统的用户&#xff0c;并且要确认具体是哪个用户 授权&#xff1a;经过认…

「C/C++」 标准文件操作大全

一、设备文件&#xff08;运行程序时会默认打开这三个设备文件&#xff09; stdin&#xff1a;标准输入&#xff0c;默认为当前终端&#xff08;键盘&#xff09;&#xff0c;我们使用的scanf、getchar函数默认从此终端获得数据。stdout&#xff1a; 标准输出&#xff0c;默认…

当你问ChatGPT一些奇奇怪怪的问题

ChatGPT热度好像已经没那么高了&#xff0c;貌似也蹭不到什么流量了&#xff0c;不过嘛&#xff0c;玩了一下好玩的还是得记录一下。每个问题用标题给出&#xff0c;就可以当目录了。同时附上截图&#xff0c;想直接看图的伙伴可以直接看图。回答以绿色背景的形式给出。 觉得有…