AI for Science系列(一) :飞桨加速CFD(计算流体力学)原理与实践

news2025/1/10 23:50:01

AI+Science专栏由百度飞桨科学计算团队出品,给大家带来在AI+科学计算领域中的一系列技术分享,欢迎大家关注和积极讨论,也希望志同道合的小伙伴加入飞桨社区,互相学习,一起探索前沿未知。

作为系列分享的第一篇,本文内容涵盖行业背景与痛点、AI+科学计算领域的前沿算法、基于飞桨的AI+科学计算产品方案、涉及的飞桨框架关键技术以及PINNs方法求解计算流体力学方腔流的案例等。

行业背景与痛点

当前AI技术在CV、NLP等领域已有了较为广泛的应用,替代传统方法完成缺陷检测、人脸检测、物体分割、阅读理解、文本生成等任务,在产业界也形成了规模化的落地。但是放眼到更加广阔的工业设计、制造等领域,仍有诸多科学和工程问题亟待解决。比如对于高层建筑结构、大跨桥梁、海上石油平台、航空飞机等,流体和结构的复杂相互作用会引起动力荷载,进而导致抖振、涡振、驰振、颤振等流致振动,影响结构安全与服役年限。数值模拟是研究工程结构流致振动的有效方法之一,但是传统数值方法需要大量的计算资源,在计算速度上有很大的局限性等等。

AI+科学计算领域 前沿算法与典型应用案例

上述的问题指向了AI+科学计算的发展: 利用深度学习技术突破维数高、时间长、跨尺度的挑战,改变科学研究范式,帮助传统行业转型。提到AI方法,大家直观的印象是大数据、神经网络模型搭建与训练。在CV,NLP等领域中也确实如此,AI方法以数据驱动,训练出神经网络以模拟图像分类、语音识别等实际问题中隐含的复杂逻辑,整体是一个“黑盒”问题。但在解决科学计算相关问题上,使用的AI方法有所变化,除了使用纯数据驱动方法解决问题外,有时候还需要加入一些物理信息约束,因此,需要更多的领域相关知识。

具体来看,在科学计算领域,往往需要针对海洋气象、能源材料、航空航天、生物制药等具体场景中的物理问题进行模拟。由于大多数物理规律可以表达为偏微分方程的形式,所以偏微分方程组的求解成为了解决科学计算领域问题的关键。神经网络具备“万能逼近”的能力,即只要网络有足够多的神经元,就可以充分地逼近任意一个连续函数。所以使用AI方法解决科学计算问题的一个思路是训练神经网络以模拟某个偏微分方程组的解函数。

使用AI 方法解决科学计算问题,相对传统方法有一些潜在的优势:

(1)高维问题处理优势
传统方法一般是基于有限差分、有限元、有限体积等方法,求得偏微分方程组的近似解。这些方法面临着“维度灾难”,即计算量随着维度增加快速增长。在AI方法的神经网络中,维度增加带来的计算量增加是线性的。

(2)硬件加速优势
传统方法由于存在串行运算,往往难以使用GPU等硬件进行加速。AI方法中的训练和推理过程都比较容易发挥GPU等硬件优势。

(3)泛化优势
AI方法解决问题分为训练和推理两个过程,一次训练,多次推理。借助神经网络的泛化能力,在某些物理参数条件下训练出的网络,在其他物理参数下也可以获得很好的模拟效果。

AI+科学计算领域中最著名的方法是PINNs(Physics-informed neural networks)方法,该方法提出一种新的复合型的损失函数,由偏微分方程组部分,边界条件部分,初始条件部分三部分组成。

Lu, L., Meng, X., Mao, Z., & Karniadakis, G. E.(2021). DeepXDE: A deep learning library for solving differential equations.SIAM Review, 63(1), 208–228. https://doi.org/10.1137/19m1274067
由于加入了物理信息约束,该方法在没有任何输入数据的情况下,只指定边界条件和初始条件,就可以训练出神经网络拟合目标PDE的解。也有一些学者在原始PINNs方法的基础上进行改进,加入一些数据,形成偏微分方程部分、边界条件部分、初始条件部分、数据部分4部分组成的损失函数,进一步提高神经网络的模拟精度,在3D不可压的流体问题上取得了不错的结果。如下图所示,分别对三种不同case使用PINNs算法基于二维二元观察速度进行了3D流场重建,并计算了三种case中不同方向速度及压力的L2范数相对误差。可以发现PINNs方法可以精准捕捉漩涡脱落的不稳定性。
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
Cai, S., Mao, Z., Wang, Z., Yin, M., &Karniadakis, G. E. (2022). Physics-informed neural networks (PINNs) for fluidmechanics: a review. Acta Mechanica Sinica. https://doi.org/10.1007/s10409-021-01148-1

总体而言,AI为科学计算问题的解决提供了新的研究范式,无论是AI完全取代传统方法,还是AI与传统方法融合的相关工作都在快速发展,未来会更大程度地影响整个科学计算领域,成为新一代革命性的方向。

基于飞桨的 AI+科学计算产品方案

飞桨科学计算开发套件以开源深度学习框架飞桨为核心,结合科学计算领域专有知识,搭配高性能的基础设施异构平台,提供给科研开发者简单易用的AI+科学计算产品方案。

百度飞桨在2021年12月正式发布飞桨科学计算套件 0.1版本,依托底层核心框架在高阶自动微分功能上的技术革新,快速高质量推进飞桨在AI+科学计算领域的能力建设。

在这里插入图片描述

飞桨科学计算套件提供泛化的微分、积分方程等接口以及两种求解器PINNs(物理信息神经网络)和FNO(傅立叶神经算子),支撑上层应用各种微分、积分方程的求解。并且我们正在开展生态共建,联合打造多个跨领域的仿真模块,并针对各个模块开发典型应用案例。飞桨科学计算套件目前已提供达西流(Darcy Flow)、顶盖方腔流(Lid-driven Cavity Flow)等计算流体力学领域的经典算例。

支撑科学计算的 框架关键技术

飞桨科学计算开发套件整体依托于飞桨核心框架,为了支持科学计算类任务,飞桨核心框架新增了函数式自动微分接口和部分算子高阶自动微分的功能。

自动微分机制是广泛应用于深度学习框架之中微分技术。区别于符号微分和数值微分,自动微分依托深度学习框架中的计算图,在每个计算图节点内进行符号微分,并把节点间的微分结果用数值存储,进而实现比数值微分更精确,比符号微分更高效的微分机制。
在这里插入图片描述

相比传统AI任务,科学计算任务对框架提出了新的需求:(1)由于损失函数中存在方程部分,功能上要求支持更高阶的微分;(2)在用户接口上,需要提供更加贴近数学公式的函数式自动微分接口。

为了支持高阶微分,我们一方面在框架中增加高阶导数算子,另一方面也在设计基础算子体系,支持不限阶数的自动微分。

图片

在自动微分接口方面,我们提供 jacobian,hessian,jvp,vjp等函数式自动微分接口,让用户可以用更加自然的方式完成方程构建。

案例介绍: PINNs方法求解计算流体力学 顶盖驱动方腔流

Lid-driven Cavity Flow(顶盖驱动方腔流)是CFD(计算流体力学)领域中一个经典benchmark问题,常用于验证计算方法,我们选择了这个问题作为CFD领域中第一个典型应用案例。顶盖驱动方腔流中包含一个充满液体的方形腔体。这个腔体三面封闭,顶部开放,顶部有水平方向的速度用来驱动方腔内的流体流动,其他三个腔壁为无滑动边界,速度为零。在这个问题下,我们需要求解稳态不可压缩的Navier-Stokes方程。
在这里插入图片描述

其中u为顶盖速度,ρ为流体密度,p为压力。首先我们在二维区域内选定计算域,构成正方形,并在x、y两个方向上进行离散选点。对四个壁面的边界条件定义如下:
在这里插入图片描述

我们拟定顶盖初始速度为1,雷诺数为10的情况下,使用PINNs方法对方腔内流场进行模拟。我们求解定常NS方程,设定自变量空间坐标(x, y)作为PINNs网络的输入,网络的输出为流场中在x,y两个方向的速度(u, v)。损失函数定义为控制方程的损失函数与边界条件的损失函数乘以各自权重并相加。神经网络通过梯度下降反向传播等机制,将损失函数数值收敛到最小,因此将NS方程求解问题转化为优化问题。

神经网络loss定义:
图片

调用PINNs求解器设置训练参数:
图片

预测流场速度(u, v)并转化为vtk文件进行可视化:
图片

结果展示:
图片

在低雷诺数下,流体粘性起到很大作用,在方腔的左右下方两个边角还未形成明显的涡,速度梯度均匀。在PINNs方法下,和传统方法(OpenFOAM)结果对比水平方向最大均方误差为7.38R-04,垂直方向最大均方误差为5.99E-04。推理计算量和网格呈线性关系,推理速度大于传统方法的12~626倍。

图片

飞桨科学计算套件Github:
https://github.com/PaddlePaddle/PaddleScience

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.coloradmin.cn/o/385179.html

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈,一经查实,立即删除!

相关文章

工作实战之代码规范

目录 前言 一、项目初期遇到的问题 1.项目整体架构搭建,微服务架构从头到尾分几层,每层负责那些功能 2.项目服务划分 3.项目服务命名约定 4.项目层级划分 5.项目包名约定 6.技术选型,包括微服务组件,日志组件,数…

WebGIS行政区炫酷特效——流光特效教程

先来看下效果: 图片截图: 流光特效的思路是从行政区的边界中随着时间不断的取若干段线条换成另一种高亮颜色。 流光的第一步首先是发光,发光的教程在这里: GIS矢量图形多边形地块行政区发光,阴影发光特效实现_疯狂的GISer的博客-CSDN博客 学会发光以后,接下来需要做的…

python实现图书管理系统(超详细)

python实现图书管理系统 图书管理系统python实现图书管理系统图书管理系统:图书的功能:现在开始添加数据:增加数据删除数据查询数据图书位置修改图书的借出图书的还回主体界面完整代码功能运行截图实验环境:PyCharm 2021.1.3 x64 专业版图书管理系统: 数…

详解JAVA字节码

目录 1.概述 2.字节码文件构成 2.1.魔数 2.2.版本号 2.3.常量池 2.4.访问标志 2.5.索引 2.6.字段表 2.7.方法表 3.字节码指令 3.1.概述 3.2.指令分类 3.2.1.加载存储指令 3.2.2.运算指令 3.2.3.其他指令 3.3.完整指令工作流程 4.字节码保护 1.概述 以往的编程…

浅析安科瑞能耗监测云平台在公共建筑上的应用及未来发展趋势

摘要:文章以每年发布的上海市国家机关办公建筑和大型公共建筑能耗监测及分析报告变化为切入点,分析了历年能耗分析报告的内容和功能变化;介绍了上海市国家机关办公建筑和大型公共建筑能耗监测平台发展和应用历程;揭示了当下显现的…

MOV压敏电阻应用推荐及选型要点说明

ESD器件-MOV压敏电阻是一种非线性的电阻元器件产品,具有瞬态电压抑制功能,能够吸收电路中多余的电流,可保护一些敏感电路及其他电子产品设备的电路不受ESD、雷击瞬态浪涌电流的危害。对于它的一些应用范围,优恩小编在这里举例说明…

2.SpringSecurity源码的初探

SpringSecurity源码的初探 一、SpringSecurity中的核心组件 在SpringSecurity中的jar分为4个,作用分别为 jar作用spring-security-coreSpringSecurity的核心jar包,认证和授权的核心代码都在这里面spring-security-config如果使用Spring Security XML名称…

【python】深入了解Selenium-PageObject

1、PageObject 定义 Page Object(简称PO)模式,是Selenium实战中最为流行,并且是自动化测试中最为熟悉和推崇的一种设计模式。在设计自动化测试时,把页面元素和元素的操作方法按照页面抽象出来,分离成一定的对象,然后再…

MySQL - 索引 与 事务

前言 本篇介绍MySQL的索引与事务,了解底层索引B树的基本思想, 了解事务的4大特征, 隔离性解决事务并发等问题; 如有错误,请在评论区指正,让我们一起交流,共同进步! 文章目录前言1. 数据库索引1.1 B树1.2 B树2. 事务总…

Linux -- 查看进程 top命令 详解

我们上篇介绍了, Linux 中的进程等概念,那么,在Linux 中如何查看进程呢 ??我们常用到的有两个命令, PS 和 top 两个命令,今天先来介绍下 top 命令~!top 命令 :主要是 交…

Unity 入门精要00---Unity提供的基础变量和宏以及一些基础知识

头文件引入: XXPROGRAM ... #include "UnityCG.cginc"; ... ENDXX 常用的结构体(在UnityCg.cginc文件中):在顶点着色器输入和输出时十分好用 。 关于如何使用这些结构体,可在Unity安装文件目录/Editor…

解压缩工具:Bandizip 中文

bandizip是一款可靠和快速的压缩软件,它可以解压RAR、7Z、ZIP、ISO等数十种格式,也可以压缩7Z、ZIP、ISO等好几种常用格式,在压缩文件方面毫不逊色于winrar,适用于多核心压缩、快速拖放、高速压缩等功能,采用了先进快速…

csapp第二章 --- 信息的表示和处理

本章重点纲要 目录 2.1 数据存储 2.1.1 进制 2.1.2 数据在内存的存储方式---大小端 2.1.3 C语言的一些知识 2.2 整数表示 2.2.1 二进制表示整数 2.2.2 扩展、截断 2.3 整数运算 2.3.1 加减法与溢出 2.3.2 逆元和补码的非 2.3.3乘法 2.4浮点数 2.4.1 IEEE规则 2.…

2023年中职组网络安全竞赛——综合渗透测试解析

综合渗透测试 题目如下: PS:需求环境可私信博主,求个三连吧! 解析如下: 通过本地PC中的渗透测试平台KALI2020对服务器场景进行渗透攻击,获取到RSYNC服务所开放的端口,将RSYNC服务开放的端口数值进行MD5加密后作为FLAG提交(如MD5加密前:812);

spark性能调优(二):内存

Memory 一、spark内存简介二、堆内内存 or 堆外内存?三、如何用好RDD Cache?四、OOM怎么办?一、spark内存简介 spark 2.0后,基本上spark内存的管理就已经自动化了,内存出现问题基本上是一些数据问题。比如数据倾斜 spark.executor.memory是绝对值,指定了executor进程的JVM…

毕业设计 基于stm32舞台彩灯控制器设计app控制系统

基于stm32舞台彩灯控制器设计app控制1、项目简介1.1 系统构成1.2 系统功能2、部分电路设计2.1 STM32F103C8T6核心系统电路设计2.2 WS2812RGB彩灯电路设计3、部分代码展示3.1 控制WS2812显示颜色3.2 设置RGB灯的颜色,角度,亮度实物图1、项目简介 选题指导…

Pluma 插件管理框架

1. 概述 Pluma 是一个用 C 开发的可用于管理插件的开源架构,其官网地址为:http://pluma-framework.sourceforge.net/。该架构是个轻量级架构,非常易于理解。 Pluma 架构有以下基本概念: 1)插件的外在行为体现为一个…

JavaSE:集合框架

为什么用集合框架如果不知道需要多少对象,或者用较为复杂的方式存储对象,可以用集合框架集合框架包含的内容ArrayList实践.size().add(Object o) .add(int index, Object o).get(int index).contains(Object o).remove(Object o) .remove(int…

高精度电流源如何设计出来

随着科技的不断进度,高精度电流源在自动测试/测量以及各种应用中承担着重要的作用。然而想要更高精度的指标参数,就需要电流源仪器研发得更完善。众所周知,高精度电流源是电子实验中重要的测试仪器,能够广泛应用在电化学、电光源、…

深入理解Windows操作系统机制(一)

我是荔园微风,作为一名在IT界整整25年的老兵,今天我们来重新审视一下Windows这个我们熟悉的不能再熟悉的系统。我们每天都在用Windows操作系统,但是其实我们每天直接在打交道的并不是Windows操作系统的内核,而是Windows操作系统的…