模电学习9. MOS管使用入门
- 一、mos管理简介
- 1. 简介
- 2. mos管理的特点
- 3. MOS管的工作状态
- (1)放大功能
- (2)截止区
- (3)饱和区
- 3. Mos管的分类
- (1)按照工作模式分类:
- (2)按照结构特点分类:
- (3) 按照功率范围分类:
- 4. MOS管的开关控制
- 二、开关实验仿真测试
- 1. 实验MOS管
- 2. G极无电压
- 3. G极设置电压
- 3. 使用方波控制
- 三、信号放大电路示例
一、mos管理简介
1. 简介
MOS管,全称为金属氧化物半导体场效应晶体管(Metal-Oxide-Semiconductor Field-Effect Transistor),是一种常用的半导体器件。它是由一条金属电极、一个绝缘层和一个半导体晶体组成的。
MOS管的工作原理是利用半导体中N型或P型区域的导电性质来控制电流的流动。在MOS管的绝缘层上面,放置了一块金属电极,形成了一个电场,当施加一个外加电压到金属电极上时,电场会影响绝缘层下面的半导体区域,改变该区域的导电性质,从而控制电流的流动。
2. mos管理的特点
MOS管有以下几个特点:
- 高输入电阻:MOS管的输入电阻非常高,可以达到很大的数值,这使得MOS管可以被用作高阻抗放大器。
- 低噪声:由于MOS管的输入电阻很高,所以它的噪声也很低,这使得MOS管可以被用作低噪声放大器。
- 低功耗:由于MOS管只需要非常小的电流来控制电流的流动,因此MOS管的功耗非常低。
- 快速响应:MOS管的响应速度非常快,可以达到几百兆赫的频率。
MOS管广泛应用于各种电子设备中,如计算机、手机、电视机、音响等等。
3. MOS管的工作状态
(1)放大功能
当MOSFET的门极电压(VGS)超过门极-源极电压(VGS(th))时,MOSFET进入放大区。在放大区,MOSFET的漏极电流(ID)随着VDS的增加而增加,但是增长速度比饱和区慢。这意味着MOSFET在放大区时可以作为放大器使用。
(2)截止区
当MOSFET的VGS低于门阈电压(VGS(th))时,MOSFET进入截止区。在截止区,MOSFET的漏极电流非常小,几乎可以忽略不计,因此可以将其视为完全关闭的状态。
(3)饱和区
当MOSFET的VGS超过VGS(th)时,并且VDS也足够大时,MOSFET进入饱和区。在饱和区,MOSFET的漏极电流达到一个最大值,并且漏极电流不再随着VDS的增加而增加。因此,MOSFET在饱和区时可以作为一个开关使用。
3. Mos管的分类
根据MOSFET的工作模式、结构特点、功率范围等不同,可以将MOSFET分为多种不同类型。以下是一些常见的MOSFET分类:
(1)按照工作模式分类:
- 恒压型MOSFET:在恒定的VGS下,通过调节VDS可以控制MOSFET的漏极电流ID。常用于放大和调节电路等。
- 恒流型MOSFET:在恒定的VDS下,通过调节VGS可以控制MOSFET的漏极电流ID。常用于开关电路等。
(2)按照结构特点分类:
- 通道型MOSFET:N型或P型的掺杂区间为一个连续的导电通道,可通过在门电极上加正向或负向电压来控制电荷的通道大小,从而控制电流。常用于放大和开关电路等。
- 压控型MOSFET:N型或P型的掺杂区间被分成多个单元,形成一个PN结,通过控制结区的电压,改变电荷区的深度和宽度,从而控制电流。常用于高压和功率电路等。
(3) 按照功率范围分类:
- 小功率MOSFET:主要应用于逻辑电路、放大器等小功率应用领域。
- 中功率MOSFET:主要应用于直流-直流转换器、电源管理、汽车电子等中功率应用领域。
- 大功率MOSFET:主要应用于高压直流输电、医疗设备、工控系统等大功率应用领域。
需要注意的是,MOSFET的分类不是绝对的,不同类型的MOSFET在不同的应用场景下也会有重叠和交叉。因此,在选择和应用MOSFET时,需要结合具体的设计需求和应用条件,综合考虑各种因素,以选择最合适的器件。
4. MOS管的开关控制
当G-S有正压差时,D-S导通。导通后,即使去掉G极电压,D-S仍可以维持导通。
让G接地,D-S截止。
二、开关实验仿真测试
1. 实验MOS管
采用MOS管为: BSS123
BSS123为N沟道逻辑电平增强型场效应晶体管,SOT-23封装.这一产品设计以最小化通导电阻,同时提供坚固耐用,可靠并高速的开关性能,因此BSS123适合低电压,低电流应用,如小型伺服电机控制,功率MOSFET栅极驱动器和其它开关应用.
- 漏极至源极电压:100V
- 栅-源电压:±20V
- 低通导电阻:1.2ohm,Vgs 10V
- 连续漏电流:170mA
- 最大功率耗散:360mW
- 工作结温范围:-55°C至150°C
- 应用:电源管理,工业,便携式器材,消费电子产品
2. G极无电压
这时MOS管处于截止状态。
3. G极设置电压
这时MOS管处理饱和状态。
3. 使用方波控制
输出波形:
这里输入0-6V正弦波,可以看到当输入正电压时,MOS管导通;当输入0伏时,MOS管截止。
当放大波形时,可以看到MOS管的导通过程。
三、信号放大电路示例
下面电路中MOS管工作在放大状态,输入的正弦波信号,可以放大后输出。
其中 :
- R22:用来给MOS管提供基础电压,也可以给电容C13用来放电。
- C13:用来接输入信号,输入信号会叠加在MOS管的G级上。
仿真波形图:这里示波器是反向接的,放大后的信号也显示出负极。