【论文笔记】Decoupling Representation and Classifier for Long-Tailed Recognition

news2024/11/25 13:52:12

这一篇其实并不是提出什么新的东西,而且是做了点类似综述的技术调用实验。省流:T-normalization最好用

摘要

现状:Existing solutions usually involve class-balancing strategies, e.g. by loss re-weighting, data re-sampling, or transfer learning from head- to tail-classes, but most of them adhere to the scheme of jointly learning representations and classifiers.
做法:we decouple the learning procedure into representation learning and classification, and systematically explore how different balancing strategies affect them for long-tailed recognition.
结论:The findings are surprising: (1)data imbalance might not be an issue in learning high-quality representations; (2)with representations learned with the simplest instance-balanced sampling, it is also possible to achieve strong long-tailed recognition ability by adjusting only the classifier.

Classification For LONG-TAILED RECOGNITION

cRT(Classifier Re-training)
re-train the classifier with class-balanced sampling. That is, keeping the representations fixed, we ramdomly re-initialize and optimize the classifier weights W and b for a small number of epochs using class-balanced sampling.

NCM (Nearest Class Mean classifier)

  1. compute the mean feature representation for each class on the training set
  2. perform nearest neightbor search either using cosine similarity or the Euclidean distance computed on L2-normalized mean features.
  3. the cosine similarity alleviates the weight imbalance problem via its inherent normalization.

t-normalized(t-normalized classifier)
inspired: after joint training with instance-balanced sampling, the norms of the weights || wj || are correlated with the cardinality of the classes nj, while, after fine-tuning the classifiers using class-balanced sampling, the norms of the classifier weights tend to be more similar.
做法:adjusting the classifier weight norms directly through the following t-normalization procedure.

LWS(Learnable weight scaling)
Another way of interpreting t-normalization would be to think of it as a re-scaling of the magnitude for each classifier wi keeping the direction unchanged.(将T-norm 转化为一种对每个分类器权重大小的重新缩放)

Sampling Strategies

Instance-balanced sampling:the most common way of sampling data, where each training example has equal probability of being selected.

Class-balanced sampling:each class has an equal probability of being selected. One can see this as a two-stage sampling strategy, where first a class is selected uniformly from the set of classes, and then an instance from that class is subsequently uniformly sampled.

Square-root sampling
A number of variants of the previous sampling strategies have been explored.

Progressive-balanced sampling
This involves first using instance-balanced sampling for a number of epochs, and then class-balanced sampling for the last epochs.

Experiments

As illustrated in Fig.4, this yields a wider classfication boundary in feature space, allowing the classifier to have much higher accuracy on data-rich classes, but hurting data-scarce classes. t-normalized classifiers alleviate this issue to some extent by providing more balanced classifier weight magnitudes.
在这里插入图片描述
官方提供的代码链接: https://github.com/facebookresearch/classifier-balancing.

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.coloradmin.cn/o/377687.html

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈,一经查实,立即删除!

相关文章

【操作方法】windows防火墙添加出入站规则方法

【操作方法】windows防火墙添加出入站规则方法说明一、入站规则1.打开防火墙,点击“高级设置”2.点击“入站规则”后点击“新建规则”3.例3.1选择“端口”3.2添加需要放通的端口3.3选择操作动作为“允许连接”3.4选择应用区域,此处我选择所有区域二、出站…

Linux: malloc()的指向指针发生指向偏移后,释放前需要将指针指向复原。

Linux: malloc()的指向指针发生指向偏移后&#xff0c;释放前需要将指针指向复原。 #include <stdlib.h> #include <stdio.h> #include <unistd.h> #include <sys/types.h> #include <sys/stat.h> #include <string.h> #include <time…

A Contextual-Bandit Approach to Personalized News Article Recommendation-论文学习

A Contextual-Bandit Approach to Personalized News Article Recommendation-论文学习 github地址&#xff1a;bandit-learning 摘要 该算法根据用户和文章的上下文信息依次选择文章为用户服务&#xff0c;同时根据用户点击反馈调整其文章选择策略&#xff0c;以最大化用户…

不是,到底有多少种图片懒加载方式?

一、也是我最开始了解到的 js方法&#xff0c;利用滚动事件&#xff0c;判断当时的图片位置是否在可视框内&#xff0c;然后进行渲染。 弊端&#xff1a;代码冗杂&#xff0c;你还要去监听页面的滚动事件&#xff0c;这本身就是一个不建议监听的事件&#xff0c;即便是我们做了…

Qt音视频开发18-不同视频打开无缝切换

一、前言 在轮询视频的时候&#xff0c;通常都是需要将之前的视频全部关闭&#xff0c;然后打开下一组视频&#xff0c;在这个切换的过程中&#xff0c;如果是按照常规的做法&#xff0c;比如先关闭再打开新的视频&#xff0c;肯定会出现空白黑屏之类的过度空白区间&#xff0…

【解决办法】windows防火墙出入站规则放通telnet方法

【操作方法】windows防火墙出站规则放通telnet方法一、出站规则1.新建出站规则中选择“程序”2.选择路径&#xff0c;点击“下一页”3.选择“允许连接”4.选择所有区域二、入站规则注&#xff1a;打开防火墙添加出入站规则参考【操作方法】windows防火墙添加出入站规则方法 一、…

Learining C++ No.12【vector】

引言&#xff1a; 北京时间&#xff1a;2023/2/27/11:42&#xff0c;高数考试还在进行中&#xff0c;我充分意识到了学校的不高级&#xff0c;因为题目真的没什么意思&#xff0c;虽然挺平易近人&#xff0c;但是……&#xff0c;考试期间时间比较放松&#xff0c;所以不能耽误…

通过python技术获取甲流分布数据

近期&#xff0c;多地学校出现因甲流导致的班级停课&#xff0c;儿科甲流患者就诊量呈数倍增长。此轮甲流为何如此严重&#xff1f;感染甲流之后会出现哪些症状&#xff1f; 经过专家的介绍甲流之所以这么严重有这些原因导致的。一、疫情完全放开后很多孩子不戴口罩了&#x…

CData Drivers for Cassandra Crack

CData Drivers for Cassandra Crack Cassandra JDBC驱动程序允许用户连接Cassandra的实时数据。它允许从任何能够支持JDBC连接的应用程序直接连接。它将Java应用程序与实时Cassandra和NoSQL以及云服务和数据库连接起来。用户可以使用ApacheCassandra&#xff0c;因为在本例中&a…

微软新版必应gpt人工智能体验教程

大家好,我是雄雄,欢迎关注微信公众号:** 雄雄的小课堂 ** 现在是:2023年2月28日18:35:02 前言 前几天,发了一篇文章,主要介绍了如何申请新必应的内测名单,其实一共也就那几步,然后等着就行: 文章连接:new bing如何快速申请内测资格,从而体验人工智能? 今天,终于…

电商搜索入门

一、搜索用途通常一个电商平台里面的商品&#xff0c;少则几十万多则上千万甚至上亿的sku&#xff0c;在这么多的商品中&#xff0c;如何让用户可以快速查找到自己想要的商品&#xff0c;那么就需要用到搜索功能来实现。通过分析数据发现&#xff0c;接近40%的点击率是直接通过…

【Redis学习2】Redis常用数据结构与应用场景

Redis常用数据结构与应用场景 redis中存储数据是以key-value键值对的方式去存储的&#xff0c;其中key为string字符类型&#xff0c;value的数据类型可以是string(字符串)、list(列表)、hash(字典)、set(集合) 、 zset(有序集合)。 这5种数据类型在开发中可以应对大部分场景的…

「RISC-V Arch」RISC-V 规范结构

日期&#xff1a;20230228 规范分类 根据 RISC-V 设计哲学&#xff0c;其规范文档也是高度模块化的&#xff1a; ISA 规范&#xff08;2 篇&#xff09; 非特权规范特权规范 非 ISA 规范&#xff08;6篇&#xff09; Trace规范ABI 规范外部调试规范PLIC 规范SBI 规范UEFI 协…

华为OD机试题,用 Java 解【计算网络信号】问题

最近更新的博客 华为OD机试题,用 Java 解【停车场车辆统计】问题华为OD机试题,用 Java 解【字符串变换最小字符串】问题华为OD机试题,用 Java 解【计算最大乘积】问题华为OD机试题,用 Java 解【DNA 序列】问题华为OD机试 - 组成最大数(Java) | 机试题算法思路 【2023】使…

微软徐明强:谈谈ChatGPT及对技术的重新思考

是2023 Microsoft Azure中国区年度技术峰会启幕之际&#xff0c;Azure 云科技推出的专栏。我们邀请了业界富有前瞻视野的技术、业务专家&#xff0c;畅谈行业洞察&#xff0c;共享创新心得。本期专栏文章中&#xff0c;微软全渠道事业部首席技术官徐明强首次在 ChatGPT 爆火后分…

Java知识复习(四)多线程、并发编程

1、进程、线程和程序 进程&#xff1a;进程是程序的一次执行过程&#xff0c;是系统运行程序的基本单位&#xff0c;因此进程是动态的&#xff1b;在 Java 中&#xff0c;当我们启动 main 函数时其实就是启动了一个 JVM 的进程&#xff0c;而 main 函数所在的线程就是这个进程…

JAVA开发(JAVA垃圾回收的几种常见算法)

JAVA GC 是JAVA虚拟机中的一个系统或者说是一个服务&#xff0c;专门是用于内存回收&#xff0c;交还给虚拟机的功能。 JAVA语言相对其他语言除了跨平台性&#xff0c;还有一个最重要的功能是JAVA语言封装了对内存的自动回收。俗称垃圾回收器。所以有时候我们不得不承认&#…

超实用的公众号用户运营方案分享,纯干货

公众运营是以用户为主的&#xff1a; 但是你知道什么是用户运营吗&#xff1f;你的公众号有没有维护好目标用户群体呢&#xff1f;你知道该怎么分析你的公众号用户群体吗&#xff1f;你知道分析完之后具体应该怎么做用户运营吗&#xff1f; 接下来伯乐网络传媒就来给大家分享…

第八届蓝桥杯省赛——7EXCLE地址

题目&#xff1a;Excel单元格的地址表示很有趣&#xff0c;它使用字母来表示列号。比如&#xff0c;A表示第1列&#xff0c;B表示第2列&#xff0c;Z表示第26列&#xff0c;AA表示第27列&#xff0c;AB表示第28列&#xff0c;BA表示第53列&#xff0c;....当然Excel的最大列号是…

【Spring Cloud Alibaba】(五)Dubbo启动报错?一直重连报错?你值得学习的是排查问题的方法

系列目录 【Spring Cloud Alibaba】&#xff08;一&#xff09;微服务介绍 及 Nacos注册中心实战 【Spring Cloud Alibaba】&#xff08;二&#xff09;微服务调用组件Feign原理实战 【Spring Cloud Alibaba】&#xff08;三&#xff09;OpenFeign扩展点实战 源码详解 【Spri…