支付宝二面:使用 try-catch 捕获异常会影响性能吗?

news2024/11/15 20:00:17

一. JVM异常处理逻辑

Java 程序中显式抛出异常由athrow指令支持,除了通过 throw 主动抛出异常外,JVM规范中还规定了许多运行时异常会在检测到异常状况时自动抛出(效果等同athrow), 例如除数为0时就会自动抛出异常,以及大名鼎鼎的 NullPointerException 。

还需要注意的是,JVM 中 异常处理的catch语句不再由字节码指令来实现(很早之前通过 jsr和 ret指令来完成,它们在很早之前的版本里就被舍弃了),现在的JVM通过异常表(Exception table 方法体中能找到其内容)来完成 catch 语句;很多人说try catch 影响性能可能就是因为认识还停留于上古时代。

1、我们编写如下的类,add 方法中计算 ++x; 并捕获异常。

2、使用javap 工具查看上述类的编译后的class文件。

 

忽略常量池等其他信息,下边贴出add 方法编译后的 机器指令集:

 

再来看 Exception table:

from=0, to=5。指令 0~5 对应的就是 try 语句包含的内容,而targer = 8 正好对应 catch 语句块内部操作。

个人理解,from 和 to 相当于划分区间,只要在这个区间内抛出了type 所对应的,“java/lang/Exception” 异常(主动athrow 或者 由jvm运行时检测到异常自动抛出),那么就跳转到target 所代表的第八行。

若执行过程中,没有异常,直接从第5条指令跳转到第11条指令后返回,由此可见未发生异常时,所谓的性能损耗几乎不存在;

如果硬是要说的话,用了try catch 编译后指令篇幅变长了;goto 语句跳转会耗费性能,当你写个数百行代码的方法的时候,编译出来成百上千条指令,这时候这句goto的带来的影响显得微乎其微。

如图所示为去掉try catch 后的指令篇幅,几乎等同上述指令的前五条。

综上所述:“Java中使用try catch 会严重影响性能” 是民间说法,它并不成立。如果不信,接着看下面的测试吧。

二、关于JVM的编译优化

其实写出测试用例并不是很难,这里我们需要重点考虑的是编译器的自动优化,是否会因此得到不同的测试结果?

本节会粗略的介绍一些jvm编译器相关的概念,讲它只为更精确的测试结果,通过它我们可以窥探 try catch 是否会影响JVM的编译优化。

  • 前端编译与优化:我们最常见的前端编译器是 javac,它的优化更偏向于代码结构上的优化,它主要是为了提高程序员的编码效率,不怎么关注执行效率优化;例如,数据流和控制流分析、解语法糖等等。

  • 后端编译与优化:后端编译包括 “即时编译[JIT]” 和 “提前编译[AOT]”,区别于前端编译器,它们最终作用体现于运行期,致力于优化从字节码生成本地机器码的过程(它们优化的是代码的执行效率)。

1、分层编译

PS * JVM 自己根据宿主机决定自己的运行模式, “JVM 运行模式”;[客户端模式-Client、服务端模式-Server],它们代表的是两个不同的即时编译器,C1(Client Compiler) 和 C2 (Server Compiler)。

PS * 分层编译分为:“解释模式”、“编译模式”、“混合模式”;

  • 解释模式下运行时,编译器不介入工作;

  • 编译模式模式下运行,会使用即时编译器优化热点代码,有可选的即时编译器[C1 或 C2];

  • 混合模式为:解释模式和编译模式搭配使用。

如图,我的环境里JVM 运行于 Server 模式,如果使用即时编译,那么就是使用的:C2 即时编译器。

2、即时编译器

了解如下的几个 概念:

(1)解释模式

它不使用即时编译器进行后端优化

  • 强制虚拟机运行于 “解释模式” -Xint

  • 禁用后台编译 -XX:-BackgroundCompilation

(2)编译模式

即时编译器会在运行时,对生成的本地机器码进行优化,其中重点关照热点代码。

# 强制虚拟机运行于 "编译模式"
    -Xcomp
    # 方法调用次数计数器阈值,它是基于计数器热点代码探测依据[Client模式=1500,Server模式=10000]
    -XX:CompileThreshold=10
    # 关闭方法调用次数热度衰减,使用方法调用计数的绝对值,它搭配上一配置项使用
    -XX:-UseCounterDecay
    # 除了热点方法,还有热点回边代码[循环],热点回边代码的阈值计算参考如下:
    -XX:BackEdgeThreshold = 方法计数器阈值[-XX:CompileThreshold] * OSR比率[-XX:OnStackReplacePercentage]
    # OSR比率默认值:Client模式=933,Server模式=140
    -XX:OnStackReplacePercentag=100

所谓 “即时”,它是在运行过程中发生的,所以它的缺点也也明显:在运行期间需要耗费资源去做性能分析,也不太适合在运行期间去大刀阔斧的去做一些耗费资源的重负载优化操作。

3、提前编译器:jaotc

它是后端编译的另一个主角,它有两个发展路线,基于Graal [新时代的主角] 编译器开发,因为本文用的是 C2 编译器,所以只对它做一个了解;

第一条路线:与传统的C、C++编译做的事情类似,在程序运行之前就把程序代码编译成机器码;好处是够快,不占用运行时系统资源,缺点是"启动过程" 会很缓慢;

第二条路线:已知即时编译运行时做性能统计分析占用资源,那么,我们可以把其中一些耗费资源的编译工作,放到提前编译阶段来完成啊,最后在运行时即时编译器再去使用,那么可以大大节省即时编译的开销;这个分支可以把它看作是即时编译缓存;

遗憾的是它只支持 G1 或者 Parallel 垃圾收集器,且只存在JDK 9 以后的版本,暂不需要去关注它;JDK 9 以后的版本可以使用这个参数打印相关信息:[-XX:PrintAOT]。

三、关于测试的约束

执行用时统计

System.naoTime() 输出的是过了多少时间[微秒:10的负9次方秒],并不是完全精确的方法执行用时的合计,为了保证结果准确性,测试的运算次数将拉长到百万甚至千万次。

编译器优化的因素

这里我要做的是:对比完全不使用任何编译优化,与使用即时编译时,try catch 对的性能影响。

(1)通过指令禁用 JVM 的编译优化,让它以最原始的状态运行,然后看有无 try catch 的影响。

(2)通过指令使用即时编译,尽量做到把后端优化拉满,看看 try catch 十有会影响到 jvm的编译优化。

关于指令重排序

目前尚未可知 try catch 的使用影响指令重排序;

我们这里的讨论有一个前提,当 try catch 的使用无法避免时,我们应该如何使用 try catch 以应对它可能存在的对指令重排序的影响。

指令重排序发生在多线程并发场景,这么做是为了更好的利用CPU资源,在单线程测试时不需要考虑。不论如何指令重排序,都会保证最终执行结果,与单线程下的执行结果相同;

虽然我们不去测试它,但是也可以进行一些推断,参考 volatile 关键字禁止指令重排序的做法:插入内存屏障;

假定 try catch 存在屏障,导致前后的代码分割;那么最少的try catch代表最少的分割。

所以,是不是会有这样的结论呢:我们把方法体内的 多个 try catch 合并为一个 try catch 是不是反而能减少屏障呢?这么做势必造成 try catch 的范围变大。

当然,上述关于指令重排序讨论内容都是基于个人的猜想,犹未可知 try catch 是否影响指令重排序;本文重点讨论的也只是单线程环境下的 try catch 使用影响性能。

四、测试代码

循环次数为100W ,循环内10次预算[给编译器优化预留优化的可能,这些指令可能被合并;

五、解释模式下执行测试

设置如下JVM参数,禁用编译优化

-Xint
  -XX:-BackgroundCompilation

结合测试代码发现,即使百万次循环计算,每个循环内都使用了 try catch 也并没用对造成很大的影响。

唯一发现了一个问题,每个循环内都是使用 try catch 且使用多次。发现性能下降,千万次计算差值为:5~7 毫秒;4个 try 那么执行的指令最少4条goto ,前边阐述过,这里造成这个差异的主要原因是 goto 指令占比过大,放大了问题;当我们在几百行代码里使用少量try catch 时,goto所占比重就会很低,测试结果会更趋于合理。

六、编译模式测试

设置如下测试参数,执行10 次即为热点代码

-Xcomp
   -XX:CompileThreshold=10
   -XX:-UseCounterDecay
   -XX:OnStackReplacePercentage=100
   -XX:InterpreterProfilePercentage=33

执行结果如下图,难分胜负,波动只在微秒级别,执行速度也快了很多,编译效果拔群啊,甚至连 “解释模式” 运行时多个try catch 导致的,多个goto跳转带来的问题都给顺带优化了;由此也可以得到 try catch 并不会影响即时编译的结论。

我们可以再上升到亿级计算,依旧难分胜负,波动在毫秒级。

七、结论

try catch 不会造成巨大的性能影响,换句话说,我们平时写代码最优先考虑的是程序的健壮性,当然大佬们肯定都知道了怎么合理使用try catch了,但是对萌新来说,你如果不确定,那么你可以使用 try catch;

在未发生异常时,给代码外部包上 try catch,并不会造成影响。举个栗子吧,我的代码中使用了:URLDecoder.decode,所以必须得捕获异常。

private int getThenAddNoJudge(JSONObject json, String key){
        if (Objects.isNull(json))
            throw new IllegalArgumentException("参数异常");
        int num;
        try {
            // 不校验 key 是否未空值,直接调用 toString 每次触发空指针异常并被捕获
            num = 100 + Integer.parseInt(URLDecoder.decode(json.get(key).toString(), "UTF-8"));
        } catch (Exception e){
            num = 100;
        }
        return num;
    }

    private int getThenAddWithJudge(JSONObject json, String key){
        if (Objects.isNull(json))
            throw new IllegalArgumentException("参数异常");
        int num;
        try {
            // 校验 key 是否未空值
            num = 100 + Integer.parseInt(URLDecoder.decode(Objects.toString(json.get(key), "0"), "UTF-8"));
        } catch (Exception e){
            num = 100;
        }
        return num;
    }

    public static void main(String[] args){
        int times = 1000000;// 百万次

        long nao1 = System.nanoTime();
        ExecuteTryCatch executeTryCatch = new ExecuteTryCatch();
        for (int i = 0; i < times; i++){
            executeTryCatch.getThenAddWithJudge(new JSONObject(), "anyKey");
        }
        long end1 = System.nanoTime();
        System.out.println("未抛出异常耗时:millions=" + (end1 - nao1) / 1000000 + "毫秒 nao=" + (end1 - nao1) + "微秒");

        long nao2 = System.nanoTime();
        for (int i = 0; i < times; i++){
            executeTryCatch.getThenAddNoJudge(new JSONObject(), "anyKey");
        }
        long end2 = System.nanoTime();
        System.out.println("每次必抛出异常:millions=" + (end2 - nao2) / 1000000 + "毫秒 nao=" + (end2 - nao2) + "微秒");
    }

调用方法百万次,执行结果如下:

经过这个例子,我想你知道你该如何 编写你的代码了吧?可怕的不是 try catch 而是搬砖业务不熟练啊。

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.coloradmin.cn/o/376440.html

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈,一经查实,立即删除!

相关文章

论文阅读:NeRF++: ANALYZING AND IMPROVING NEURAL RADIANCE FIELDS

中文标题&#xff1a;分析并提升神经辐射场 提出问题 把NeRF生成的视角图像投影到一个球模型上&#xff08;体密度在球面上为1&#xff0c;其余为零&#xff09;&#xff0c;这个模型可以很好解释训练集&#xff08;左2&#xff09;&#xff0c;但是一旦推广到其他视角&#x…

阶段八:服务框架高级(第五章:服务异步通信-高级篇(RabbitMQ高级))

阶段八&#xff1a;服务框架高级&#xff08;第五章&#xff1a;服务异步通信-高级篇&#xff08;RabbitMQ高级&#xff09;&#xff09;Day-第五章&#xff1a;服务异步通信-高级篇&#xff08;RabbitMQ高级&#xff09;0.学习目标1.消息可靠性1.1.生产者消息确认1.1.1.修改配…

Docker离线部署

Docker离线部署 目录 1、需求说明 2、下载docker安装包 3、上传docker安装包 4、解压docker安装包 5、解压的docker文件夹全部移动至/usr/bin目录 6、将docker注册为系统服务 7、重启生效 8、设置开机自启 9、查看docker版本信息 1、需求说明 大部份公司为了服务安全…

【PostgreSQL的idle in transaction连接状态】

在平时查询pg_stat_activity这个视图的时候&#xff0c;每一行包含了一个进程的相关信息&#xff0c;包含当前正在执行的SQL&#xff0c;或者会话的状态等等&#xff0c;state字段表示当前进程的状态。在PostgreSQL数据库里&#xff0c;其实代码里总共定义了7种BackendState&am…

手推式洗地机什么牌子好?洗地机品牌排行榜

当今潮流下&#xff0c;大家都开始纷纷追求高品质的居家生活&#xff0c;洗地机也成为越来越多人的追求&#xff0c;因为和传统的吸尘器相比&#xff0c;洗地机除了有扫地的功能之外&#xff0c;还可以轻松搞定家里的拖地任务&#xff0c;下面我们一起来看看洗地机排行榜都有哪…

怎么把音乐传到苹果手机上?如何将铃声导入iphone

很多人肯定都有这样的经验—比起电脑&#xff0c;使用iPhone和iPad播放音乐能获得更好的声音体验。 因此&#xff0c;现在有越来越多的用户将音乐传输到iPhone/iPad上播放。怎么把音乐传到苹果手机上&#xff1f;把音乐导入苹果手机&#xff0c;主要有2种方法&#xff1a;一种是…

【python】运算符,有关它的一切,都在这里了

Python运算符嗨害大家好鸭&#xff01;我是小熊猫~什么是运算符&#xff1f;Python算术运算符Python比较运算符Python赋值运算符Python位运算符Python逻辑运算符Python成员运算符Python身份运算符Python运算符优先级嗨害大家好鸭&#xff01;我是小熊猫~ 源码资料电子书:点击此…

【软考——系统架构师】UML 建模与架构文档化

&#x1f50e;这里是【软考——系统架构师】&#xff0c;关注我考试轻松过线 &#x1f44d;如果对你有帮助&#xff0c;给博主一个免费的点赞以示鼓励 欢迎各位&#x1f50e;点赞&#x1f44d;评论收藏⭐️ 文章目录UML 基础UML 软件开发过程系统架构文档化送书福利UML 基础 U…

【2.27】动态规划、MySQL锁,基础篇、Redis

执行一条 select 语句&#xff0c;期间发生了什么&#xff1f; MySQL 执行流程是怎样的&#xff1f; MySQL 的架构共分为两层&#xff1a;Server 层和存储引擎层。 Server 层负责建立连接、分析和执行 SQL。MySQL 大多数的核心功能模块都在这实现&#xff0c;主要包括连接器&…

MyBatis - 07 - MyBatis的各种查询功能

文章目录项目 结构SelectMapper接口SelectMapper.xmlSelectMapperTest测试类测试结果1、查询一个实体类对象&#xff08;1.根据id查询用户信息&#xff09;2、查询一个list集合&#xff08;2.查询所有用户信息&#xff09;3、查询单个数据&#xff08;3.查询用户信息的总记录数…

Datawhale统计学习方法打卡Task05

学习教材《统计学习方法&#xff08;第二版&#xff09;》李航 学习内容&#xff1a;第5章 决策树 第五章 决策树 决策树是一种基本你的分类与回归方法。决策树模型呈树形结构&#xff0c;在分类问题中&#xff0c;表示基于特征对实例进行分类的过程。通过ID3和C4.5介绍特征…

测试开发工程师,年薪100W不过分吧

在说测试开发工程师的薪资待遇之前&#xff0c;咱们要先了解软件测试岗位是用来做什么的&#xff0c;岗位是否重要&#xff0c;只有你知道了这些&#xff0c;才能判断这个岗位是否有价值&#xff01;软件测试是依据需求分析和测试用例&#xff0c;运用手工和自动化的手段来验证…

mysql中用逗号隔开的字段作查询用(find_in_set的使用)

mysql中用逗号隔开的字段作查询用(find_in_set的使用) 场景说明 在工作中&#xff0c;经常会遇到一对多的关系。想要在mysql中保存这种关系&#xff0c;一般有两种方式&#xff0c;一种是建立一张中间表&#xff0c;这样一条id就会存在多条记录。或者采用第二种方式&#xff…

[音视频] wav 格式

wav 格式结构 WAV文件遵循RIFF规则&#xff0c;其内容以区块&#xff08;chunk&#xff09;为最小单位进行存储。WAV文件一般由3个区块组成&#xff1a;RIFF chunk、Format chunk和Data chunk。另外&#xff0c;文件中还可能包含一些可选的区块&#xff0c;如&#xff1a;Fact…

javascript尾递归优化

JS中的递归 我们来看一个阶乘的代码 function foo( n ){if(n < 1){return 1;}return n * foo( n - 1 ); }foo(5); // 120下面分析一下&#xff0c;代码运行过程中,执行上下文栈是怎么变化的 这个代码是在全局作用域中执行的&#xff0c;所以在foo函数得到执行之前&#x…

ubuntu下用i686-w64-mingw32交叉编译支持SDL、Openssl的ffmpeg库

前言 本篇博客是基于前两篇关于ffmpeg交叉编译下&#xff0c;进行再次编译操作。ubuntu下ffmpeg的交叉编译环境搭建可以参看以下我的这篇博客&#xff1a;https://blog.csdn.net/linyibin_123/article/details/108759367 &#xff1b; ubuntu下交叉编译openssl及交叉编译支持o…

【微信小程序】-- WXML 模板语法 - 事件绑定 -- tap input (十)

&#x1f48c; 所属专栏&#xff1a;【微信小程序开发教程】 &#x1f600; 作  者&#xff1a;我是夜阑的狗&#x1f436; &#x1f680; 个人简介&#xff1a;一个正在努力学技术的CV工程师&#xff0c;专注基础和实战分享 &#xff0c;欢迎咨询&#xff01; &…

模电学习8. 三极管推挽电路

模电学习8. 三极管推挽电路一、推挽的概念二、三极管基本的推挽电路1. 上N下P型电路(1) 原理图(2) 电流分析2. 上P下N型(1) 原理图(2) 电流分析三、电路仿真分析1. 测试原理图2. 简要分析三、三极管的交越失真2. 处理方式三、三极管推挽电路的缺点一、推挽的概念 在电路中&…

Android性能优化(三)—— 绘制优化

运行的 Android 手机&#xff0c;虽然配置在不断的提升&#xff0c;但是仍然无法和 PC 相比&#xff0c;无法做到 PC 那样拥有超大内存以及高性能的 CPU。因此在开发 Android 应用程序时也不可能无限制的使用 CPU 和内存&#xff0c;如果对 CPU 和 内存使用不当也会造成应用的卡…

Tomcat的部署详解(基于Centos7.9))

文章目录Tomcat的部署1.1 安装jdk1.2、安装Tomcat1.3 Tomcat的目录结构1.4 Tomcat管理Tomcat web管理功能Tomcat配置文件TomcatTomcat&#xff1a;一种web服务器 Tomacat是由Apache推出的一款免费开源的Servlet容器&#xff0c;可实现JavaWeb程序的装载。 Tomcat服务器是一个…