嵌入式 STM32 红外遥控

news2024/9/27 9:24:42

目录

红外遥控

NEC码的位定义 

硬件设计 

软件设计

源码程序 


红外遥控

红外遥控是一种无线、非接触控制技术,具有抗干扰能力强,信息传输可靠,功耗低,成本低,容易实现等显著的特点,被诸多电子设备特别是家用电器广泛采用,并越来越多的应用到计算机系统上面。

   由于红外线遥控不具有像无线电遥控那样穿过障碍物去控制被控对象的能力,所以,在设计红外线遥控器的时候,不必要像无线电遥控器那样,每一套(发射器和接收器)要有不同的遥控频率或编码(否则,就会隔墙控制或干扰另据的家用电器),

所以同类产品的红外线遥控器,可以有相同的遥控频率或编码,而不会出现遥控信号“串门”的情况。这对于大批量生产以及在家用电器上普及红外线遥控提供了极大的方面。由于红外线为不可见光,因此对环境影响很小,再由红外光波动波长远小于无线电波的波长,所以红外线遥控不会影响其他家用电器,也不会影响临近的无线电设备。

红外遥控的编码方式目前广泛使用的是: PWM(脉冲宽度调制)的 NEC 协议和 Philips PPM(脉冲位置调制) 的 RC-5 协议的。 遥控器使用的是NEC 协议,其特征如下:

  1. 8 位地址和 8 位指令长度;
  2. 地址和命令 2 次传输(确保可靠性)
  3. PWM 脉冲位置调制,以发射红外载波的占空比代表“0”和“1”;
  4. 载波频率为 38Khz;
  5. 位时间为 1.125ms 或 2.25ms;

RGB超薄遥控器,1-32键遥控器,用于USB卡小音响遥控器/车载MP3遥控器/足浴器遥控器/灯具遥控器/数码相框遥控器/单片机遥控器/开发板遥控器等。详细参数如下:

  • 尺寸:84.5*56.5*6.0mm。
  • 产品内含1个CR2025纽扣电池。
  • 有效角度:60度。
  • 面贴材料:0.125mmPET,有效寿命2万次 。
  • 含CR2025纽扣电池,有绝缘片(以免不用时耗电)。

NEC码的位定义 

一个脉冲对应 560us 的连续载波,一个逻辑 1 传输需要 2.25ms(560us 高+1680us 低),一个逻辑 0 的传输需要 1.125ms(560us 高+560us 低)。而红外接收头在收到脉冲的时候为低电平,在没有脉冲的时候为高电平,这样,我们在接收头端收到的信号为:逻辑 1 应该是 560us 低+1680us 高,逻辑 0 应该是 560us 低+560us(接受头接受到的电平值取反)

NEC 遥控指令的数据格式为:同步码头(引导码/起始码)、地址码(遥控ID)、地址反码、控制码(键值)、控制反码。同步码由一个 9ms 的低电平和一个 4.5ms 的高电平组成,地址码、地址反码、控制码、控制反码均是8 位数据格式。按照低位在前,高位在后的顺序发送。采用反码是为了增加传输的可靠性(可用于校验)。

我们遥控器的按键“OFF”按下时,从红外接收头端收到的波形如下图所示:

从上图中可以看到,其地址码为 0(一个周期看,低电平时间为560us,高电平时间为560us,表示逻辑0..),控制码为96。可以看到在 100ms 之后,我们还收到了几个脉冲,这是 NEC 码规定的连发码(由 9ms 的低电平、2.5ms的高电平、0.56ms 的低电平、97.94ms 的高电平组成),如果在一帧数据发送完毕之后,按键仍然没有放开,则发射重复码,即连发码,可以通过统计连发码的次数来标记按键按下的长短/次数。

硬件设计 

PA8--复用功能

采用TIM1_CH1输入捕获功能,通过波形的捕获得到当前的地址码+地址反码+控制码+控制反码(32位)

软件设计

当接收到同步码头就知道有按键被按下

开始接收地址码+地址反码+控制反码

重点是通过捕获一段的脉冲的高电平时间来区分是逻辑1还是逻辑0还是同步码还是连发码

源码程序 

#include "remote.h"
#include "delay.h"
#include "usart.h"

//红外遥控初始化
//设置IO以及定时器4的输入捕获
void Remote_Init(void)    			  
{  
	GPIO_InitTypeDef GPIO_InitStructure;
	NVIC_InitTypeDef NVIC_InitStructure;
	TIM_TimeBaseInitTypeDef  TIM_TimeBaseStructure;
	TIM_ICInitTypeDef  TIM_ICInitStructure;  
 
 	RCC_APB2PeriphClockCmd(RCC_APB2Periph_GPIOB,ENABLE); //使能PORTB时钟 
	RCC_APB1PeriphClockCmd(RCC_APB1Periph_TIM4,ENABLE);	//TIM4 时钟使能 

	GPIO_InitStructure.GPIO_Pin = GPIO_Pin_9;				 //PB9 输入 
 	GPIO_InitStructure.GPIO_Mode = GPIO_Mode_IPD; 		//上拉输入 
 	GPIO_InitStructure.GPIO_Speed = GPIO_Speed_50MHz;
 	GPIO_Init(GPIOB, &GPIO_InitStructure);
 	GPIO_SetBits(GPIOB,GPIO_Pin_9);	//初始化GPIOB.9
	
						  
 	TIM_TimeBaseStructure.TIM_Period = 10000; //设定计数器自动重装值 最大10ms溢出  
	TIM_TimeBaseStructure.TIM_Prescaler =(72-1); 	//预分频器,1M的计数频率,1us加1.	   
	TIM_TimeBaseStructure.TIM_ClockDivision = TIM_CKD_DIV1; //设置时钟分割:TDTS = Tck_tim
	TIM_TimeBaseStructure.TIM_CounterMode = TIM_CounterMode_Up;  //TIM向上计数模式

	TIM_TimeBaseInit(TIM4, &TIM_TimeBaseStructure); //根据指定的参数初始化TIMx

  TIM_ICInitStructure.TIM_Channel = TIM_Channel_4;  // 选择输入端 IC4映射到TI4上
  TIM_ICInitStructure.TIM_ICPolarity = TIM_ICPolarity_Rising;	//上升沿捕获
  TIM_ICInitStructure.TIM_ICSelection = TIM_ICSelection_DirectTI;
  TIM_ICInitStructure.TIM_ICPrescaler = TIM_ICPSC_DIV1;	 //配置输入分频,不分频 
  TIM_ICInitStructure.TIM_ICFilter = 0x03;//IC4F=0011 配置输入滤波器 8个定时器时钟周期滤波
  TIM_ICInit(TIM4, &TIM_ICInitStructure);//初始化定时器输入捕获通道

  TIM_Cmd(TIM4,ENABLE ); 	//使能定时器4
 
	NVIC_InitStructure.NVIC_IRQChannel = TIM4_IRQn;  //TIM3中断
	NVIC_InitStructure.NVIC_IRQChannelPreemptionPriority = 1;  //先占优先级0级
	NVIC_InitStructure.NVIC_IRQChannelSubPriority = 3;  //从优先级3级
	NVIC_InitStructure.NVIC_IRQChannelCmd = ENABLE; //IRQ通道被使能
	NVIC_Init(&NVIC_InitStructure);  //根据NVIC_InitStruct中指定的参数初始化外设NVIC寄存器	

	TIM_ITConfig( TIM4,TIM_IT_Update|TIM_IT_CC4,ENABLE);//允许更新中断 ,允许CC4IE捕获中断								 
}

//遥控器接收状态
//[7]:收到了引导码标志
//[6]:得到了一个按键的所有信息
//[5]:保留	
//[4]:标记上升沿是否已经被捕获								   
//[3:0]:溢出计时器
u8 	RmtSta=0;	  	  
u16 Dval;		//下降沿时计数器的值
u32 RmtRec=0;	//红外接收到的数据	   		    
u8  RmtCnt=0;	//按键按下的次数	  
//定时器4中断服务程序	 
void TIM4_IRQHandler(void)
{ 		    	 
 
	if(TIM_GetITStatus(TIM4,TIM_IT_Update)!=RESET)
	{
		if(RmtSta&0x80)								//上次有数据被接收到了
		{	
			RmtSta&=~0X10;							//取消上升沿已经被捕获标记
			if((RmtSta&0X0F)==0X00)RmtSta|=1<<6;	//标记已经完成一次按键的键值信息采集
			if((RmtSta&0X0F)<14)RmtSta++;
			else
			{
				RmtSta&=~(1<<7);					//清空引导标识
				RmtSta&=0XF0;						//清空计数器	
			}								 	   	
		}							    
	}
	if(TIM_GetITStatus(TIM4,TIM_IT_CC4)!=RESET)
	{	  
		if(RDATA)//上升沿捕获
		{
  			TIM_OC4PolarityConfig(TIM4,TIM_ICPolarity_Falling);						//CC4P=1	设置为下降沿捕获
			TIM_SetCounter(TIM4,0);							//清空定时器值
			RmtSta|=0X10;							//标记上升沿已经被捕获
		}else //下降沿捕获
		{
			Dval=TIM_GetCapture4(TIM4);					//读取CCR4也可以清CC4IF标志位
  		TIM_OC4PolarityConfig(TIM4,TIM_ICPolarity_Rising);				//CC4P=0	设置为上升沿捕获
			if(RmtSta&0X10)							//完成一次高电平捕获 
			{
 				if(RmtSta&0X80)//接收到了引导码
				{
					
					if(Dval>300&&Dval<800)			//560为标准值,560us
					{
						RmtRec<<=1;					//左移一位.
						RmtRec|=0;					//接收到0	   
					}else if(Dval>1400&&Dval<1800)	//1680为标准值,1680us
					{
						RmtRec<<=1;					//左移一位.
						RmtRec|=1;					//接收到1
					}else if(Dval>2200&&Dval<2600)	//得到按键键值增加的信息 2500为标准值2.5ms
					{
						RmtCnt++; 					//按键次数增加1次
						RmtSta&=0XF0;				//清空计时器		
					}
 				}else if(Dval>4200&&Dval<4700)		//4500为标准值4.5ms
				{
					RmtSta|=1<<7;					//标记成功接收到了引导码
					RmtCnt=0;						//清除按键次数计数器
				}						 
			}
			RmtSta&=~(1<<4);
		}				 		     	    					   
	}
	TIM_ClearITPendingBit(TIM4,TIM_IT_Update|TIM_IT_CC4);	 	    
}

//处理红外键盘
//返回值:
//	 0,没有任何按键按下
//其他,按下的按键键值.
u8 Remote_Scan(void)
{        
	u8 sta=0;       
    u8 t1,t2;  
	if(RmtSta&(1<<6))//得到一个按键的所有信息了
	{ 
	    t1=RmtRec>>24;			//得到地址码
	    t2=(RmtRec>>16)&0xff;	//得到地址反码 
 	    if((t1==(u8)~t2)&&t1==REMOTE_ID)//检验遥控识别码(ID)及地址 
	    { 
	        t1=RmtRec>>8;
	        t2=RmtRec; 	
	        if(t1==(u8)~t2)sta=t1;//键值正确	 
		}   
		if((sta==0)||((RmtSta&0X80)==0))//按键数据错误/遥控已经没有按下了
		{
		 	RmtSta&=~(1<<6);//清除接收到有效按键标识
			RmtCnt=0;		//清除按键次数计数器
		}
	}  
    return sta;
}

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.coloradmin.cn/o/376123.html

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈,一经查实,立即删除!

相关文章

二进制、十六进制和浮点数ASCII的转换机制--------IEEE754

我在使用GPS时&#xff0c;通过网口接收到了BESTPOS格式的输出结果&#xff0c;它以16进制表示。 当前常见的GPS都以ASCII表示&#xff0c;例如我们在串口助手中可以选择输出类型为ASCII或者是16进制&#xff0c;那么说明它们中见肯定存在某种转换机制&#xff0c;既可以表示出…

javaEE 初阶 — 网络层 IP 协议 的功能 — 路由选择与地址管理

文章目录IP 协议的功能1.IP 协议的路由选择2.IP 协议的地址管理2.1 网络号与主机号的分界2.2 特殊 IPIP 协议的功能 网络层主要做两件事&#xff1a; 地址管理 路由选择 网络层的代表就是 IP 协议 网络层主要是负责管理路由设备&#xff0c;要从两个结点之间找到一条具体的…

01 presto 概述: 特性 优缺点 场景 架构

文章目录1. Presto是什么2. Presto优缺点2.1. 优点2.2. 缺点3. Presto适用场景4. Presto数据模型5. Presto 架构5.1 执行流程关键词&#xff1a;MPP 多源 即席查询 统一SQL执行引擎 分布式SQL引擎 数据分析 1. Presto是什么 Presto是一款开源的分布式并行计算(MPP)引擎&#x…

Hive基础命令

一、Hive其他命令 1、在hive cli命令窗口中如何查看hdfs文件系统 dfs -ls /;2、在hive cli命令窗口中如何查看本地文件系统 !ls /opt;二、Hive数据类型 1、基本数据类型 红标为常用的数据类型&#xff1b; 对于Hive的String类型相当于数据库的varchar类型&#xff0c;该类型…

python之web自动化测试框架

梳理下搭建web自动化框架的流程&#xff1a; 创建目录&#xff1a; cases&#xff1a;存放测试用例&#xff0c;unittest框架要求用例名必须以test开头&#xff0c;所以命名test_case.py test_case.py代码如下&#xff1a;继承unittest.TestCase类下面的方法setupclass(),te…

优思学院|精益生产现场管理的要素是什么?

精益生产的目的是通过消除3M来实现生产过程的优化和精简。3M指的是 "Muda"、"Muri"、"Mura"&#xff0c;这三个词来自于日本&#xff0c;代表了生产过程中的浪费、超负荷和不平衡。 因此&#xff0c;要消除3M&#xff0c;优思学院认为企业精益生…

qt-c++进阶1-window、linux下获取本机所有网卡ip信息、根据网卡名获取ip地址。

系列文章目录 例如&#xff1a;第一章 主要是通过qt-c实现获取本机电脑的网卡信息或者是IP信息 文章目录系列文章目录前言一、获取本机网卡IP信息1.1 获取ip地址方法1.2 代码实例总结前言 总结c获取本机网卡信息的方法 第一章&#xff1a;适用于windows操作系统、linux操作系…

中级嵌入式系统设计师2015下半年下午应用技能试题

中级嵌入式系统设计师2015下半年下午试题 试题一 阅读以下关于某嵌入式系统设计的说明,回答下列问题。 [说明] 某公司承接了某嵌入式系统的研制任务。该嵌入式系统由数据处理模块、系统管理模块、FC网络交换模块和智能电源模块组成,系统组成如图1所示。数据处理模块处理系统…

Linux 练习三 (Makefile工程管理器)

文章目录Makefile工程管理器第一个makefile&#xff1a;编写两个.c源文件&#xff0c;并且让一个调用另外一个&#xff0c;使用makefile建立依赖&#xff0c;生成可执行文件&#xff0c;并执行。伪目标变量预定义变量和自动变量通配符和模式匹配内置函数循环指定makefile文件综…

js数组格式字符串处理

文章目录一. 前言二. 数组还原1. 方法一2. 方法二3. 方法三4. 方法四一. 前言 由于数据传输的问题我们常常在请求后拿到数组格式的字符串&#xff0c;一般情况分为以下四种&#xff1a; let str1 ["a","b","c","d"]; // 类型一 let…

【异常解决】The coordinator is not available

问题 最近上线跑了一个flink任务&#xff0c;运行不久&#xff0c;就会挂掉&#xff0c;初步查看日志报错如下 WARN org.apache.flink.connector.kafka.source.reader.KafkaSourceReader [] - Failed to commit consumer offsets for checkpoint 1 org.apache.kafka.clients…

IGBT窄脉冲现象

IGBT窄脉冲现象 tips&#xff1a;资料来自知乎 英飞凌《IGBT窄脉冲现象解读》 IGBT窄脉冲现象 1.什么是窄脉冲现象? 2.窄脉冲现象的原因 3.双脉冲测试IGBT窄脉冲开通 4.FWD窄脉冲开通 1.什么是窄脉冲现象? IGBT作为一种功率开关&#xff0c;从门级信号到器件开关过程…

用Python制作邮件检测器

github地址&#xff1a; https://github.com/CaLlMeErIC/MailDetective 因为需求需要写一个简单的邮件检测系统的框架&#xff0c;这里记录下思路 首先第一反应,这个检测系统不应该是各个邮件收件系统都有自带的吗&#xff0c;于是搜索了下是否有相关的邮件检测开源软件&#…

行测-判断推理-图形推理-样式规律-属性规律-对称性

中心对称&#xff1a;可以看作&#xff0c;图上的每一个点&#xff0c;都能关于中心点&#xff0c;在图上找到另一个对称的点五个图都是轴对称图形&#xff0c;只有答案C是轴对称图形选C都是中心对称图形选A1 3 5中心对称2 4 6轴对称中心对称选B对称轴顺时针45旋转选A对称轴的数…

极智项目 | 实战pytorch arcface人脸识别

欢迎关注我的公众号 [极智视界]&#xff0c;获取我的更多经验分享 大家好&#xff0c;我是极智视界&#xff0c;本文介绍 实战pytorch arcface人脸识别&#xff0c;并提供完整项目源码。 本文介绍的实战arcface人脸识别项目&#xff0c;提供完整的可以一键训练、测试的项目工程…

微信公众号历史作品定向采集

最近有遇到微信公众号历史作品采集的需求,这里做一下记录, 登录自己注册好的的微信公众号后台进入创作界面,点击右上角的引用: 弹出如下界面: 选择查找公众号文章,输入要查找的公众号: 回车: 同时就可以打开F12开始抓包,选择公众号点击进入: appmsg?action=li…

golang 整合antlr语法校验

1. 背景 在项目中我们可能会遇到表达式检索的场景&#xff0c;例如&#xff0c;输入以下表达式检索&#xff0c;需要解析表达式并得到检索结果。 ip"192.168.1.3" && (port"80" || protocol"http")此时&#xff0c;我们需要对语法进行…

Linux启动过程

theme: channing-cyan 两种启动方式 传统启动方式&#xff08;LEGACYMBR&#xff09; 指传统BIOS启动方式&#xff0c;存在一些不足&#xff1a;比如最大只支持2TB磁盘&#xff0c;磁盘最多四个分区&#xff0c;且不支持图形操作 UEFIGPT方式 是新式的启动方式&#xff0c…

数学小课堂:三次方程(定理发明的过程)

文章目录 引言I 一元三次方程1.1 通解发明权之争1.2 费拉里-塔尔塔利亚公式1.3 Mathematica1.4 数学定理发明的过程引言 学习数学,最重要的是把实际问题变成数学问题,然后知道如何利用各种软件工具来解决。 方程是一个能把具体问题,等量转化成类型问题的好工具。 一元三次方…

Jetson AGX Orin安装Anaconda、Cuda、Cudnn、Pytorch最全教程

文章目录一&#xff1a;Anaconda安装二&#xff1a;Cuda、Cudnn安装三&#xff1a;Pytorch安装一&#xff1a;Anaconda安装 Jetson系列边缘开发板&#xff0c;其架构都是arm64&#xff0c;而不是传统PC的amd64&#xff0c;深度学习的环境配置方法大不相同。想要看amd64的相关环…