【MySQL】事务隔离级别是怎么实现的?

news2025/1/13 7:44:01

事务隔离级别是怎么实现的?

四种隔离级别具体的实现方式

  • 对于「读未提交」:直接读取最新的数据就好。
  • 对于「串行化」:通过加读写锁的方式来避免并行访问。
  • 对于「读提交」和「可重复读」:通过 Read View 来实现,主要区别在于创建 Read View 的时机不同。
    • 可以把 Read View 理解成一个数据快照,「读提交」隔离级别是在「每个语句执行前」都会重新生成一个 Read View,而「可重复读」隔离级别是「启动事务时」生成一个 Read View,然后整个事务期间都在用这个 Read View。

事务的特性

  • 并不是所有的引擎都能支持事务,比如 MySQL 原生的 MyISAM 引擎就不支持事务,也正是这样,所以大多数 MySQL 的引擎都是用 InnoDB。
  • 事务的特性
    • 原子性(Atomicity)同一个事务中的所有操作,要么全部完成,要么全部回滚,就像这个事务从来没有执行过一样,就好比买一件商品,购买成功时,则给商家付了钱,商品到手;购买失败时,则商品在商家手中,消费者的钱也没花出去。
    • 一致性(Consistency)是指事务操作前后,数据满足完整性约束,数据保持合法状态。比如,用户 A 和用户 B 在银行分别有 800 元和 600 元,总共 1400 元,用户 A 给用户 B 转账 200 元,分为两个步骤,从 A 的账户扣除 200 元和对 B 的账户增加 200 元。一致性就是要求上述步骤操作后,最后的结果是用户 A 还有 600 元,用户 B 有 800 元,总共 1400 元,保持数据的合法状态。
    • 隔离性(Isolation):多个事务同时使用相同的数据时,不会相互干扰,隔离性可以防止多个事务并发执行时由于交叉执行而导致数据的不一致,因为每个事务都有一个完整的数据空间,对其他并发事务是隔离的。也就是说,消费者购买商品这个事务,是不影响其他消费者购买的。
    • 持久性(Durability):事务一旦提交,对数据的修改就是永久的。
  • InnoDB 引擎通过什么技术来保证事务的这四个特性的呢?
    • 持久性是通过 redo log (重做日志)来保证的;
    • 原子性是通过 undo log(回滚日志) 来保证的;
    • 隔离性是通过 MVCC(多版本并发控制) 或锁机制来保证的;
    • 一致性则是通过持久性+原子性+隔离性来保证;

并行事务会引发什么问题?

MySQL 服务端是允许多个客户端连接的,在同时处理多个事务的时候,就可能出现**脏读(dirty read)、不可重复读(non-repeatable read)、幻读(phantom read)**的问题。

  • 脏读:一个事务读取到了另一个事务修改过的但是还未提交的数据,就发生了脏读。此时事务发生回滚,那么另一个事务刚才得到的数据就是过期的数据。
  • 不可重复读:一个事务内多次读取同一个数据,如果出现前后两次读到数据不一样的情况,就意为着发生了不可重复读现象。
  • 幻读:一个事务内多次查询某个符合查询条件的记录数量,如果出现前后两次查询到的记录数量不一样的情况,就意味着发生了幻读现象。

事务的隔离级别有哪些?

SQL 标准提出了四种隔离级别来规避这些现象,隔离级别越高,性能效率就越低,这四个隔离级别如下:

  • (可以)读未提交(read uncommitted,指一个事务还没提交时,它做的变更就能被其他事务看到;
  • 读已提交RC(read committed,指一个事务提交之后,它做的变更才能被其他事务看到;
  • 可重复读RR(repeatable read,指一个事务执行过程中看到的数据,一直跟这个事务启动时看到的数据是一致的,MySQL InnoDB 引擎的默认隔离级别
  • 串行化(serializable;会对记录加上读写锁,在多个事务对这条记录进行读写操作时,如果发生了读写冲突的时候,后访问的事务必须等前一个事务执行完成,才能继续执行;

针对不同的隔离级别,并发事务发生的现象有可能不同。

  • 在「读未提交」隔离级别下,可能发生脏读、不可重复读和幻读现象;
  • 在「读提交」隔离级别下,可能发生不可重复读和幻读现象,但是不可能发生脏读现象;
  • 在「可重复读」隔离级别下,可能发生幻读现象,但是不可能脏读和不可重复读现象;
  • 在「串行化」隔离级别下,脏读、不可重复读和幻读现象都不可能会发生。

MySQL InnoDB 引擎的默认隔离级别虽然是「可重复读」,但是它很大程度上避免幻读现象

  • 在可重复读隔离级别中,普通的 select 语句就是基于 MVCC 实现的快照读,也就是不会加锁的。而 select … for update 语句是当前读,也就是每次读都是拿到最新版本的数据,但是它会对读到的记录加上 next-key lock 锁。

    • 快照读(普通 select 语句),是通过 **MVCC(多版本控制)方式解决了幻读。**因为可重复读隔离级别下,事务执行过程中看到的数据,一直跟这个事务启动时看到的数据是一致的,即使中途有其他事务插入了一条数据,是查询不出来这条数据的,所以就很好了避免幻读问题。

    • 当前读(select … for update 等语句),是**通过 next-key lock(记录锁+间隙锁)方式解决了幻读。**因为当执行 select … for update 语句的时候,会加上 next-key lock,如果有其他事务在 next-key lock 锁范围内插入了一条记录,那么这个插入语句就会被阻塞,无法成功插入,所以就很好了避免幻读问题。


MySQL 有两种开启事务的命令,分别是:

  • 第一种:begin/start transaction 命令;当执行了增删查改操作的 SQL 语句,才是事务真正启动的时机。
  • 第二种:start transaction with consistent snapshot 命令;马上启动事务。

Read View在MVCC里如何工作?

Read View 有四个重要的字段:

  • creator_trx_id :指的是创建该 Read View 的事务的事务 id

  • m_ids :指的是在创建 Read View 时,当前数据库中「活跃事务」的事务 id 列表,注意是一个列表,“活跃事务”指的就是,启动了但还没提交的事务

  • min_trx_id :指的是在创建 Read View 时,当前数据库中「活跃事务」中事务 id 最小的事务,也就是 m_ids 的最小值。

  • max_trx_id :这个并不是 m_ids 的最大值,而是创建 Read View 时当前数据库中应该给下一个事务的 id 值,也就是全局事务中最大的事务 id 值 + 1;


聚簇索引记录中有两个隐藏列:

  • trx_id,当一个事务对某条聚簇索引记录进行改动时,就会把该事务的事务 id 记录在 trx_id 隐藏列里

  • roll_pointer,每次对某条聚簇索引记录进行改动时,都会把旧版本的记录写入到 undo 日志中,然后这个隐藏列是个指针,指向每一个旧版本记录,于是就可以通过它找到修改前的记录。

  • 在创建 Read View 后,我们可以将记录中的 trx_id 划分这三种情况:

在这里插入图片描述

  • 一个事务去访问记录的时候,除了自己的更新记录总是可见之外,还有这几种情况:

    • 如果记录的 trx_id 值小于(当前事务的)Read View中的 min_trx_id 值(活跃事务中的最小事务id),表示这个版本的记录是在创建 Read View 已经提交的事务生成的,所以该版本的记录对当前事务可见
    • 如果记录的 trx_id 值大于等于(当前事务的)Read View中的 max_trx_id 值(全局事务的最大id + 1),表示这个版本的记录是在创建 Read View 才启动的事务生成的,所以该版本的记录对当前事务不可见
    • 如果记录的 trx_id 值在 Read View 的min_trx_id和max_trx_id之间,需要判断 trx_id 是否在 m_ids 列表中(也就是判断当前事务是否为活跃事务/未提交事务):
      • 如果记录的 trx_id m_ids 列表中,表示生成该版本记录的活跃事务依然活跃着(活跃事务还没提交),所以该版本的记录对当前事务不可见
      • 如果记录的 trx_id 不在 m_ids列表中,表示生成该版本记录的活跃事务已经被提交,所以该版本的记录对当前事务可见
  • 这种通过「版本链」来控制并发事务访问同一个记录时的行为就叫 MVCC(多版本并发控制),使数据库在发生读写请求冲突时不用加锁,这里的读指的是快照读,这样就提高了MySQL的并发性能。

可重复读是如何工作的?

  • 可重复读隔离级别是启动事务时生成一个 Read View,然后整个事务期间都在用这个 Read View

  • 假设事务 A (事务 id 为51)启动后,紧接着事务 B (事务 id 为52)也启动了,那这两个事务创建的 Read View 如下:

  • 接着,在可重复读隔离级别下,事务 A 和事务 B 按顺序执行了以下操作:

    • 事务 B 读取小林的账户余额记录,读到余额是 100 万;

      • 找到记录后,会先看这条记录的 trx_id,此时发现 trx_id 为 50,比事务 B 的 Read View 中的 min_trx_id 值(51,最小活跃事务id)还小,这意味着修改这条记录的事务早就在事务 B 启动前提交过了,所以该版本的记录对事务 B 可见的,也就是事务 B 可以获取到这条记录。
    • 事务 A 将小林的账户余额记录修改成 200 万,并没有提交事务;

      • 事务 A 通过 update 语句将这条记录修改了(还未提交事务),将小林的余额改成 200 万,这时 MySQL 会记录相应的 undo log,并以链表的方式串联起来,形成版本链在这里插入图片描述
    • 事务 B 读取小林的账户余额记录,读到余额还是 100 万;

      • 事务 B 第二次去读取该记录,发现这条记录的 trx_id 值为 51,在事务 B 的 Read View 的 min_trx_id 和 max_trx_id 之间,则需要判断 trx_id 值是否在 m_ids 范围内,判断的结果是在的,那么说明这条记录是被还未提交的事务修改的,这时事务 B 并不会读取这个版本的记录。而是沿着 undo log 链条往下找旧版本的记录,直到找到 trx_id 小于事务 B 的 Read View 中的 min_trx_id 值的第一条记录,所以事务 B 能读取到的是 trx_id 为 50 的记录,也就是小林余额是 100 万的这条记录。这里就通过MVCC的方式实现了可重复读。因为都是快照读(普通SELECT语句),所以MVCC也解决了幻读。
    • 事务 A 提交事务;

    • 事务 B 读取小林的账户余额记录,读到余额依然还是 100 万;

      • 当事物 A 提交事务后,由于隔离级别是可重复读,所以事务 B 再次读取记录时,还是基于启动事务时创建的 Read View 来判断当前版本的记录是否可见。所以,即使事物 A 将小林余额修改为 200 万并提交了事务, 事务 B 第三次读取记录时,读到的记录都是小林余额是 100 万的这条记录。

读提交是如何工作的?

  • 读提交隔离级别是在每次读取数据时,都会生成一个新的 Read View

  • 假设事务 A (事务 id 为51)启动后,紧接着事务 B (事务 id 为52)也启动了,接着按顺序执行了以下操作:

    • 事务 B 读取数据(创建 Read View),小林的账户余额为 100 万;

      • 找到记录后,会先看这条记录的 trx_id,此时发现 trx_id 为 50,比事务 B 的 Read View 中的 min_trx_id 值(51,最小活跃事务id)还小,这意味着修改这条记录的事务早就在事务 B 启动前提交过了,所以该版本的记录对事务 B 可见的,也就是事务 B 可以获取到这条记录。

        在这里插入图片描述

    • 事务 A 修改数据(还没提交事务),将小林的账户余额从 100 万修改成了 200 万;

    • 事务 B 读取数据(创建 Read View),小林的账户余额为 100 万;

      • 事务 B 在找到小林这条记录时,会看这条记录的 trx_id 是 51,在事务 B 的 Read View 的 min_trx_id 和 max_trx_id 之间,接下来需要判断 trx_id 值是否在 m_ids 范围内,判断的结果是在的,那么说明这条记录是被还未提交的事务修改的,这时事务 B 并不会读取这个版本的记录。而是,沿着 undo log 链条往下找旧版本的记录,直到找到 trx_id 「小于」事务 B 的 Read View 中的 min_trx_id 值的第一条记录,所以事务 B 能读取到的是 trx_id 为 50 的记录,也就是小林余额是 100 万的这条记录。
    • 事务 A 提交事务;

    • 事务 B 读取数据(创建 Read View),小林的账户余额为 200 万;

      • 第三次创建的Read View(m_ids变为只有52,因为A事务id为51的已经提交了,min_trx_id变为52。):事务 B 在找到小林这条记录时,会发现这条记录的 trx_id 是 51,比事务 B 的 Read View 中的 min_trx_id 值(52,最小活跃事务id)还小,这意味着修改这条记录的事务早就在创建 Read View 前提交过了,所以该版本的记录对事务 B 是可见的在这里插入图片描述
  • 正是因为在读提交隔离级别下,事务每次读数据时都重新创建 Read View,那么在事务期间的多次读取同一条数据,前后两次读的数据可能会出现不一致,因为可能这期间另外一个事务修改了该记录,并提交了事务。

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.coloradmin.cn/o/372569.html

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈,一经查实,立即删除!

相关文章

JS学习第4天——事件高级(注册/删除事件、DOM事件流、阻止事件冒泡、事件委托、常用的鼠标/键盘事件)

目录一、注册事件 / 删除事件1、注册事件(绑定事件)2、删除事件(解绑事件)二、DOM事件流三、事件对象event1、事件对象的兼容性2、e.targent和this的区别3、事件对象常见的属性和方法四、阻止事件冒泡五、事件委托(代理…

数据采集与预处理学习

文章目录要求题解要求 根据表格求出哪两个演员合作电影数最多,及合作的电影数。 题解 from openpyxl import load_workbookwb load_workbook("电影导演演员信息表.xlsx") ws wb.worksheets[0]actors_films dict() for i, row in enumerate(ws.rows):i…

CAN总线开发一本全(4) - FlexCAN的驱动程序

CAN总线开发一本全(4) - FlexCAN的驱动程序 苏勇,2023年2月 文章目录CAN总线开发一本全(4) - FlexCAN的驱动程序引言从MindSDK获取FlexCAN驱动程序数据结构配置通信引擎的结构体类型访问MB的结构体类型配置ID过滤器的…

1 机器学习基础

1 机器学习概述 1.1 数据驱动的问题求解 大数据-Big Data 大数据的多面性 1.2 数据分析 机器学习:海量的数据,获取有用的信息 专门研究计算机怎样模拟或实现人类的学习行为,以获取新的知识或技能,重新组织已有的知识结构使之…

Python多进程编程

一 多进程编程 Python实现多进程的方式有两种:一种方法是os模块中的fork方法,另一种是使用multiprocessing模块。 前者仅适用于LINUX/UNIX操作系统,对Windows不支持,后者则是跨平台的实现方式。 第一种方式:使用os模…

【C++修行之路】STL——模拟实现string类

文章目录前言类框架构造与析构c_str迭代器操作符重载[]&#xff1a;&#xff1a;> > < < !:reverse与resizereverseresizepush_back与append复用实现insert和erasec_str与流插入、流提取eraseswap(s1,s2)与s1.swap(s2)结语前言 这次我们分几个部分来实现string类…

spark第一章:环境安装

系列文章目录 spark第一章&#xff1a;环境安装 文章目录系列文章目录前言一、文件准备1.文件上传2.文件解压3.修改配置4.启动环境二、历史服务器1.修改配置2.启动历史服务器总结前言 spark在大数据环境的重要程度就不必细说了&#xff0c;直接开始吧。 一、文件准备 1.文件…

React Use Hook 尝鲜

React Use Hook 尝鲜 最近继续在找处理 React 异步调用的方式……主要是现在需求比较复杂&#xff0c;用 cache query 的方式去实现有那么一丢丢的麻烦&#xff0c;又不是很想用额外的包&#xff0c;所以就想看看有没有比较好的一些处理方式。 当然&#xff0c;可以用到生产环…

tkinter界面的TCP通信/tkinter开启线程接收TCP

前言 用简洁的语言写一个可以与TCP客户端实时通信的界面。之前做了一个项目是要与PLC进行信息交互的界面&#xff0c;在测试的时候就利用TCP客户端来实验&#xff0c;文末会附上TCP客户端。本文分为三部分&#xff0c;第一部分是在界面向TCP发送数据&#xff0c;第二部分是接收…

Linux基础命令-dd拷贝、转换文件

文章目录 dd 命令介绍 语法格式 基本参数 参考实例 1&#xff09;生成一个200M的新文件 2&#xff09;拷贝文件的100个字节 3&#xff09;将文件的字母全部转换成大写 4&#xff09;将linux自带的光盘制作成iso格式的镜像文件 5&#xff09;使用dd命令制作1G的交换分…

软考中级-操作系统

1 操作系统地位计算机系统由硬件和软件组成&#xff0c;未配置软件的称为裸机&#xff0c;但这会导致效率低下。操作系统是为弥补用户与硬件之间的鸿沟的一种系统软件&#xff0c;汇编、编译、解释、数据库管理系统等系统软件和其他应用软件都在此基础。2 进程管理又称处理机管…

Linux Ubuntu配置国内源

因为众所周知的原因&#xff0c;国外的很多网站在国内是访问不了或者访问极慢的&#xff0c;这其中就包括了Ubuntu的官方源。 所以&#xff0c;想要流畅的使用apt安装应用&#xff0c;就需要配置国内源的镜像。 市面上Ubuntu的国内镜像源非常多&#xff0c;比较有代表性的有清华…

pytorch学习日记之激活函数

常用的激活函数为S型&#xff08;sigmoid&#xff09;激活函数、双曲正切&#xff08;Tanh&#xff09;激活函数、线性修正单元&#xff08;ReLU&#xff09;激活函数等&#xff0c;对应Pytorch的函数如下所示 层对应的种类功能torch.nn.SigmoidSigmoid激活函数torch.nn.TanhT…

_vue-3

Vue3有了解过吗&#xff1f;能说说跟vue2的区别吗&#xff1f; 1. 哪些变化 从上图中&#xff0c;我们可以概览Vue3的新特性&#xff0c;如下&#xff1a; 速度更快体积减少更易维护更接近原生更易使用 1.1 速度更快 vue3相比vue2 重写了虚拟Dom实现编译模板的优化更高效的…

数据挖掘概述

目录1、数据挖掘概述2、数据挖掘常用库3、模型介绍3.1 分类3.2 聚类3.3 回归3.4 关联3.5 模型集成4、模型评估ROC 曲线5、模型应用1、数据挖掘概述 数据挖掘&#xff1a;寻找数据中隐含的知识并用于产生商业价值 数据挖掘产生原因&#xff1a;海量数据、维度众多、问题复杂 数…

直接拿项目运行npm start 会出现’react-scripts’ 不是内部或外部命令,也不是可运行的程序或批处理文件错误

目录 解决方案 原因 解决方案 npm install react-scripts或npm install安装完成后再次运行 npm start 即可 原因 create-react-app有丢包的缺陷&#xff0c;手动安装包后&#xff0c;需要重新npm install一下&#xff0c;这样node_modules/.bin/目录下才会重新出现react-s…

【论文阅读】基于LevelDB的分布式数据库研究

基于LevelDB的分布式数据库研究 基于LevelDB的分布式数据库的研究与实现 - 中国知网 (cnki.net) 实现了什么&#xff1f; 基于键值型NoSQL数据库LevelDB&#xff0c;并与数据一致性算法Raft、 数据分片和负载均衡相结合&#xff0c;设计并实现基于LevelDB的分布式数据库。 主要…

Wireshark “偷窥”浏览器与服务器三次握手

本文使用的是Wireshark 4.0.3, Java 11 编写简易服务器&#xff0c;客户端使用Chrome浏览器移动端开发或是前、后端开发又或是高大上的云计算都脱离不了网络&#xff0c;离开了网络的计算机就是一个孤岛&#xff0c;快速上手开发、背面试八股文固然有些急功近利&#xff0c;但确…

jstatd的启动方式与关闭方式

启动方式与注意事项&#xff1a; 启动方式&#xff1a; 前台启动不打印日志&#xff1a; jstatd -J-Djava.security.policyjstatd.all.policy -J-Djava.rmi.server.hostname服务器IP 前台启动并打印日志&#xff1a; ./jstatd -J-Djava.security.policyjstatd.all.policy -…

傻瓜式minio使用指南

傻瓜式minio使用指南1. docker部署minio1.1 docker拉取minio镜像1.2 创建docker容器1.3 查看docker容器是否启动正常2.登陆minio2.1 账户、密码为原先设置minioadmin2.2 创建桶2.3 设置桶属性3.Java客户端使用3.1引入依赖3.2 使用3.3 结果1. docker部署minio 1.1 docker拉取mi…