Unity Avatar Camera Controller 第一、第三人称相机控制

news2025/1/19 19:38:15

文章目录

  • 简介
    • Variables
  • 实现
    • Target Position
    • Target Rotation
    • Others


简介

本文介绍如何实现用于Avatar角色的相机控制脚本,支持第一人称、第三人称以及两种模式之间的切换,工具已上传至SKFramework框架的Package Manager中:

SKFramework PackageManager

Avatar Camera Controller

Variables

  • Avatar:相机跟随的Avatar角色;
  • Control Mode:控制模式 第一人称/第三人称;
  • Mode Change Key:切换第一/第三人称模式的快捷键,若不支持切换设为None即可;

切换视角

  • Forward Align With Avatar:视角前方是否与Avatar对齐,为flase时表示视角可以在水平方向旋转;

Forward Align With Avatar 为 false

  • Horizontal Sensitivity:水平方向旋转的灵敏度;
  • Vertical Sensitivity:垂直方向旋转的灵敏度;
  • Rot Y Min Limit:垂直方向上旋转最小值限制;
  • Rot Y Max Limit:垂直方向上旋转最大值限制;
  • Rotation Lerp Time:插值到目标旋转值所需的时间;
  • Height:相机与Avatar角色的高度差;
  • Distance:相机与Avatar角色的默认距离;
  • Min Distance Limit:相机距人物最小距离限制;
  • Max Distance Limit:相机距人物最大距离限制;
  • fpmDistance:第一人称模式所用的固定距离(第一人称时距离固定);
  • scollSensitivity:鼠标滚轮的灵敏度(第三人称时可滚动距离);

滚动距离

  • Invert Scroll Direction:反转鼠标滚轮滚动的反向;
  • Horizontal Offset:与Avatar在水平方向上的偏移值(仅在Forward Align With Avatar为true时开启使用,可以让Avatar在视野中偏左或偏右);

Horizontal Offset

  • Obstacle Layer:用于避障检测的Layer层级

如下例所示,将场景中障碍物体的Layer设为Obstacle
Obstacle Layer

避障检测时检测该层级:

避障检测

Ctrl Avatar Rot When FP Mode:是否在第一人称模式下旋转视角时,同步旋转Avatar角色的朝向;

Ctrl Avatar Rot When FP Mode

实现

Target Position

影响相机坐标的元素包括Avatar与相机的距离(Distance)、Avatar与相机的高度差(Height)、目标旋转值、水平方向上的偏移量(Horizontal Offset)及避障检测的影响。

  • Avatar与相机的距离:第三人称模式下通过鼠标滚轮控制,并通过最大最小值进行钳制,第一人称模式下使用固定值,代码如下:
//鼠标滚轮滚动改变距离
distance -= Input.GetAxis("Mouse ScrollWheel") * Time.deltaTime * 100f * scollSensitivity * (invertScrollDirection ? -1f : 1f);
//距离钳制
distance = Mathf.Clamp(distance, minDistanceLimit, maxDistanceLimit);
//插值方式计算距离
targetDistance = controlMode == ControlMode.ThirdPersonControl
    ? Mathf.Lerp(targetDistance, distance, Time.deltaTime * scollSensitivity)
    : fpmDistance;
  • 调用避障检测之前,目标坐标值等于Avatar角色的坐标加上Height高度,加上Distance距离,并乘上目标旋转值,代码如下:
//目标坐标值
Vector3 targetPosition = targetRotation * Vector3.forward * -targetDistance + avatar.position + Vector3.up * height;
  • 避障检测,通过SphereCast球形物理检测,检测碰撞点并向前移动:
//避障检测
private Vector3 ObstacleAvoidance(Vector3 current, Vector3 target, float radius, float maxDistance)
{
    Ray ray = new Ray(target, current - target);
    if (Physics.SphereCast(ray, radius, out RaycastHit hit, maxDistance, obstacleLayer))
    {
        return ray.GetPoint(hit.distance - radius * 2f);
    }
    return current;
}
  • 最终加上水平方向上偏移量的影响:
//避障
targetPosition = ObstacleAvoidance(targetPosition, avatar.position + Vector3.up * height, .1f, distance);
transform.position = targetPosition + Vector3.left * horizontalOffset;

Target Rotation

  • 获取水平及垂直方向上的输入值,让旋转x、y值自增/自减,并通过最大最小值限制垂直方向上的取值范围:
//检测鼠标右键按下
if (Input.GetMouseButton(1))
{
    horizontal = forwardAlignWithAvatar ? 0f : Input.GetAxis("Mouse X") * Time.deltaTime * 100f * horizontalSensitivity;
    vertical = Input.GetAxis("Mouse Y") * Time.deltaTime * 100f * verticalSensitivity;

    rotX += horizontal;
    rotY -= vertical;
    //钳制旋转y值角度
    rotY = Mathf.Clamp(rotY, rotYMinLimit, rotYMaxLimit);
}
  • 加入插值运算,实现平滑旋转:
//目标旋转值
Quaternion targetRotation = Quaternion.Euler(rotY, rotX, 0f);
//旋转值插值率
float rotationLerpPct = 1f - Mathf.Exp(Mathf.Log(1f - .99f) / rotationLerpTime * Time.deltaTime);
//插值方式计算旋转值
targetRotation = Quaternion.Lerp(transform.rotation, targetRotation, rotationLerpPct);
  • 第一人称模式时,相机视角旋转的同时控制Avatar角色的旋转:
transform.rotation = targetRotation;

//第一人称控制模式 相机视角旋转的同时控制Avatar角色的旋转
if (controlMode == ControlMode.FirstPersonControl && ctrlAvatarRotWhenFPMode)
{
    Vector3 euler = Vector3.zero;
    //只取相机的RotY
    euler.y = targetRotation.eulerAngles.y;
    avatar.rotation = Quaternion.Euler(euler);
}

Others

  • 切换控制模式:
if (Input.GetKeyDown(modeChangeKey))
{
    controlMode = controlMode == ControlMode.FirstPersonControl
        ? ControlMode.ThirdPersonControl
        : ControlMode.FirstPersonControl;
}
  • 相机控制代码需写在MonoBehaviour生命周期函数LateUpdate中,确保Avatar角色运动完成后,相机再进行跟随。

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.coloradmin.cn/o/371882.html

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈,一经查实,立即删除!

相关文章

51单片机入门 - 简短的位运算实现扫描矩阵键盘

介绍 例程使用 SDCC 编译、 stcgal 烧录,如果你想要配置一样的环境,可以参考本专栏的第一篇文章“51单片机开发环境搭建 - VS Code 从编写到烧录”,我的设备是 Windows 10,使用普中51单片机开发板(STC89C52RC&#xf…

Qt编写微信支付宝支付

文章目录一 微信支付配置参数二 支付宝支付配置参数三 功能四 Demo效果图五 体验地址一 微信支付配置参数 微信支付API,需要三个基本必填参数。 微信公众号或者小程序等的appid;微信支付商户号mchId;微信支付商户密钥mchKey; 具…

文件基础IO

目录 前言 用库进行文件操作 文件描述符 理解Linux一切皆文件 缓冲区 认识缓冲区 缓冲区缓冲策略 磁盘结构 磁盘分区 软链接和硬链接 硬链接本质 软连接本质 动态库和静态库进阶 写一个静态库 动态库的产生和使用 动静态库的加载 总结: 前言 在我们了…

SE | 哇哦!让人不断感叹真香的数据格式!~

1写在前面 最近在用的包经常涉及到SummarizedExperiment格式的文件,不知道大家有没有遇到过。🤒 一开始觉得这种格式真麻烦,后面搞懂了之后发现真是香啊,爱不释手!~😜 2什么是SummarizedExperiment 这种cla…

lighthouse的介绍和基本使用方法

Lighthouse简介 Lighthouse是一个开源的自动化性能测试工具,我们可以使用该功能检测我们的页面存在那些性能方面的问题,并会生成一个详细的性能报告来帮助我们来优化页面 使用方式 LH一共有四种使用方式 Chrome开发者工具Chrome扩展Node 命令行Node …

数据结构与算法(一)-软件设计(十七)

设计模式(十五)-面向对象概念https://blog.csdn.net/ke1ying/article/details/129171047 数组 存储地址的计算: 一维数组a[n],当a[2]的存储地址为:a2*len,如果每一个数组元素只占用一个字节,那…

Spring Batch 高级篇-分区步骤

目录 引言 概念 分区器 分区处理器 案例 转视频版 引言 接着上篇:Spring Batch 高级篇-并行步骤了解Spring Batch并行步骤后,接下来一起学习一下Spring Batch 高级功能-分区步骤 概念 分区:有划分,区分意思,在…

中国ETC行业市场规模及未来发展趋势

中国ETC行业市场规模及未来发展趋势编辑根据市场调研在线网发布的2023-2029年中国ETC行业发展策略分析及战略咨询研究报告分析:随着政府坚持实施绿色出行政策,ETC行业也受到了极大的支持。根据中国智能交通协会统计,2017年中国ETC行业市场规模…

浅析Linux内核进程间通信(信号量)

信号灯与其他进程间通信方式不大相同,它主要提供对进程间共享资源访问控制机制。相当于内存中的标志,进程可以根据它判定是否能够访问某些共享资源(临界区,类似于互斥锁),同时,进程也可以修改该…

FreeRTOS任务基础知识

单任务和多任务系统单任务系统单任务系统的编程方式,即裸机的编程方式,这种编程方式的框架一般都是在main()函数中使用一个大循环,在循环中顺序的执行相应的函数以处理相应的事务,这个大循环的部分可以视为…

Linux内核共享内存使用常见陷阱与分析

所谓共享内存就是使得多个进程可以访问同一块内存空间,是最快的可用IPC形式。是针对其他通信机制运行效率较低而设计的。往往与其它通信机制,如 信号量结合使用,来达到进程间的同步及互斥。其他进程能把同一段共享内存段“连接到”他们自己的…

【华为OD机试模拟题】用 C++ 实现 - 最小叶子节点(2023.Q1)

最近更新的博客 【华为OD机试模拟题】用 C++ 实现 - 获得完美走位(2023.Q1) 文章目录 最近更新的博客使用说明最小叶子节点题目输入输出示例一输入输出示例二输入输出Code使用说明 参加华为od机试,一定要注意不要完全背诵代码,需要理解之后模仿写出,通过率才会高。 华…

oracle数据库使用JDBC导入ClickHouse数据

一、背景 需求要把oracle中的数据导入到clickhouse中,使用clickhouse的jdbc表引擎,把oracle11g的数据导入到clickhouse中。 二、方案 通过clickhouse-jdbc-bridge:是clickhouse提供的一个jdbc组件,用于通过JDBC的方式远程访问其他…

[面试直通版]网络协议面试核心之IP,TCP,UDP-TCP与UDP协议的区别

点击->计算机网络复习的文章集<-点击 目录 前言 UDP TCP 区别小总结 前言 TCP和UDP都是在传输层&#xff0c;在程序之间传输数据传输层OSI模型&#xff1a;第四层TCP/IP模型&#xff1a;第三层关键协议&#xff1a;TCP协议、UDP协议传输层属于主机间不同进程的通信传…

Unity Lighting -- 光照入门

识别光源 首先来看一张图&#xff0c;看看我们能在这个场景中找到几个光源。 相信大家能够很容易看出来&#xff0c;四盏路灯模型带有四个光源&#xff0c;右边的红绿蓝三个发光的灯也是光源。场景中还有一个光源&#xff0c;这个光源来自天空&#xff0c;让场景看起来有点日落…

尚医通(二十四)就医提醒和预约统计

目录一、就医提醒1、搭建定时任务模块二、后台管理系统-预约统计功能1、开发每天预约数据接口2、封装远程调用接口4、整合统计功能前端一、就医提醒 我们通过定时任务&#xff0c;每天8点执行&#xff0c;提醒就诊 1、搭建定时任务模块 &#xff08;1&#xff09;添加依赖 &l…

【MySQL】调控 字符集

一、 MySQL 启动选项 & 系统变量 启动选项 是在程序启动时我们程序员传递的一些参数&#xff0c;而 系统变量 是影响服务器程序运行行为的变量 1.1 启动项 MySQL 客户端设置项包括&#xff1a; 允许连入的客户端数量 、 客户端与服务器的通信方式 、 表的默认存储引擎 、…

zookeeper入门到精通

文章目录一、zookeeper入门1. 概述zookeeper的工作机制2.特点3.数据结构4.应用场景4.1.统一命名服务4.2.统一配置管理4.3.统一集群管理4.4.服务器节点动态上下线4.5.软负载均衡5.下载地址二、zookeeper安装1.本地模式安装2.配置参数解读三、zookeeper集群操作1.集群操作1.1 集群…

C++学习笔记-继承

继承的基本概念 类与类之间的关系 has-A&#xff0c;包含关系&#xff0c;用以描述一个类由多个“部件类”构成&#xff0c;实现has-A关系用类的成员属性表示&#xff0c;即一个类的成员属性是另一个已经定义好的类。 use-A&#xff0c;一个类使用另一个类&#xff0c;通过类…

前端面试题整理6-react

React 中 keys 的作用是什么&#xff1f; Keys是 React 用于追踪哪些列表中元素被修改、被添加或者被移除的辅助标识 在开发过程中&#xff0c;我们需要保证某个元素的 key 在其同级元素中具有唯一性。在 React Diff 算法中React 会借助元素的 Key 值来判断该元素是新近创建的还…