Xilinx ZYNQ FSBL解读:LoadBootImage()

news2025/3/12 0:33:24

篇首

最近突发奇想,Xilinx 的集成开发环境已经很好了,很多必要的代码都直接生成了,这给开发者带来了巨大便利的同时,也让人错过了很多代码的精彩,可能有很多人用了很多年了,都还无法清楚的理解其中过程。博主准备以FSBL为例,与大家深入探讨一番,从而加深对ZYNQ的加载过程的理解,以便大家作出更精彩的设计!


LoadBootImage() 解读

本文以Zynq7000 FSBL工程代码为基础,分析启动流程核心函数 L o a d B o o t I m a g e ( ) LoadBootImage() LoadBootImage()的执行逻辑与关键技术细节。

一、函数调用框架

int LoadBootImage(void) {
    FsblHookBeforeBitstreamDdr(); // 钩子函数
    Status = XFsbl_LoadPartitions(...); // 核心加载
    FsblHookBeforeHandoff(); // 移交前预处理
    return Status;
}

二、 函数执行全流程分解

** 函数入口与预处理**
int LoadBootImage(void) {
    u32 Status = XFSBL_SUCCESS;
    XTime tStart, tEnd;  // 64位计时器(若启用性能分析)
  • 硬件依赖
    • 依赖psu_init.c完成的PS端基础初始化(时钟、MIO、SLCR锁等)
    • DDR物理层已通过Xil_DDRInit()完成训练(psu_ddr_phyinit.c
** F s b l H o o k B e f o r e B i t s t r e a m D d r ( ) FsblHookBeforeBitstreamDdr() FsblHookBeforeBitstreamDdr() 钩子函数**
#ifdef FSBL_PERF
    XTime_GetTime(&tStart);  // 记录TSC起始值(AXI Timer 0)
#endif
/* 用户自定义扩展点:可插入DDR重配置代码 */
  • 关键寄存器操作
    • DDRC控制:通过Xil_Out32(0xFD070000, 0x00040010)设置DDRC_ADDRMAP0调整地址映射
    • OCM重映射:关闭OCM缓存(SLCR.OCM_CFG寄存器位3置1)
X F s b l L o a d P a r t i t i o n s ( ) XFsbl_LoadPartitions() XFsblLoadPartitions() 核心加载
阶段1:Boot Header解析
XFsblPs_BootHdr Header;
XFsbl_CheckBootHeader(ImageAddr, &Header); // 从QSPI/NAND读取头部
  • 头部结构体xfsbl_ps_boothdr.h):
    typedef struct {
        u32 ImageID;          // 魔数0xAA995566
        u32 NumPartitions;    // 分区总数(含PL比特流+应用)
        u32 AuthType;         // 加密类型:0=None, 1=RSA-2048
        u32 Checksum;         // 头部的CRC32校验
        // ... 其他字段(分区表偏移、证书偏移等)
    } XFsblPs_BootHdr;
    
阶段2:安全认证(以RSA-2048为例)
XSecure_Sha3Init(&Sha3Instance);  // 初始化SHA-3引擎
XSecure_Sha3Update(&Sha3Instance, (u8*)ImageAddr, Header.HashLength);
XSecure_Sha3Final(&Sha3Instance, CalculatedHash);  // 计算哈希
XSecure_VerifySignature(CalculatedHash, StoredSignature); // RSA验签
  • 硬件加速
    • 使用PS内置的CSU模块(Crypto Subsystem)
    • RSA密钥存储在eFUSE或BBRAM中(通过XSecure_GetEfuseKek()读取)
阶段3:分区加载循环
for (u8 i=0; i<Header.NumPartitions; i++) {
    XFsblPs_PartitionHdr PartHdr;
    XFsbl_ReadPartitionHdr(ImageAddr + Offset, &PartHdr);
    
    if (PartHdr.Attr & PART_ATTR_PL) {  // PL比特流分区
        XFsbl_LoadPlBitstream(PartHdr.LoadAddr, PartHdr.Size);
    } else {  // PS应用程序分区
        XFsbl_LoadElf(PartHdr.LoadAddr, PartHdr.Size); // ELF解析
    }
}
  • 关键操作细节
    • PL加载:通过DevCfg接口(XDcfg_CfgInitialize())写入PCAP
    • ELF加载:解析Program Headers,使用Xil_Out32()逐段写入DDR
    • 地址对齐:通过XLAT_FSBL_TABLE处理非32位对齐访问(触发Data Abort时自动转换)
F s b l H o o k B e f o r e H a n d o f f ( ) FsblHookBeforeHandoff() FsblHookBeforeHandoff() 移交前处理
Xil_DCacheFlush();  // 数据缓存刷新(确保DDR数据一致性)
Xil_Out32(CRL_APB_BASE + 0x24, 0x01000F00);  // 配置时钟分频
  • 寄存器详解
    • CRL_APB (0xFF5E0024): 设置RPLL_CTRL分频系数(CPU=1.3GHz, DDR=1066MHz)
    • SLCR_UNLOCK (0xF8000008): 写入0xDF0D解锁保护寄存器

三、关键子函数解析

  1. F s b l H o o k B e f o r e B i t s t r e a m D d r ( ) FsblHookBeforeBitstreamDdr() FsblHookBeforeBitstreamDdr()

    • 作用:DDR初始化前的预处理钩子
    • 执行内容:
      #ifdef FSBL_PERF
      XTime_GetTime(&tStart); // 性能计数器启动
      #endif
      
  2. X F s b l L o a d P a r t i t i o n s ( ) XFsbl_LoadPartitions() XFsblLoadPartitions()

    • 流程分解:
      • X F s b l C h e c k B o o t H e a d e r ( ) XFsbl_CheckBootHeader() XFsblCheckBootHeader()
        验证BIN文件头结构(含 s i z e o f ( X F s b l P s B o o t H d r ) sizeof(XFsblPs_BootHdr) sizeof(XFsblPsBootHdr)
      • X F s b l A u t h e n t i c a t i o n ( ) XFsbl_Authentication() XFsblAuthentication()
        执行RSA-2048签名验证(通过 X S e c u r e S h a 3 I n i t ( ) XSecure_Sha3Init() XSecureSha3Init()等加密API)
      • 分区加载循环
        遍历分区表加载:
        for(u8 PartNum=0; PartNum<Header.NumPartitions; PartNum++){
            XFsbl_LoadPartition(...); // 加载单个分区
            #ifdef FSBL_DEBUG
            xil_printf("Partition %d Loaded\r\n", PartNum);
            #endif
        }
        
  3. F s b l H o o k B e f o r e H a n d o f f ( ) FsblHookBeforeHandoff() FsblHookBeforeHandoff()

    • 执行DDR刷新操作( X i l D C a c h e F l u s h ( ) Xil_DCacheFlush() XilDCacheFlush()
    • 配置时钟分频器(通过 X i l O u t 32 ( ) Xil_Out32() XilOut32()写CRL_APB寄存器)

四、核心宏定义

  • $FSBL_DEBUG
    控制调试输出(默认关闭)
  • KaTeX parse error: Double subscript at position 15: XPAR_PSU_DDR_0_̲S_AXI_BASEADDR
    DDR控制器基地址宏(值 0 x 00100000 0x00100000 0x00100000
  • X L A T F S B L T A B L E XLAT_FSBL_TABLE XLATFSBLTABLE
    地址转换表(处理非对齐访问)

五、执行流程图

初始化硬件 → 验证头部 ↓ ↓ DDR预处理 → 加载分区 ↘ ↓ 移交控制权 \begin{array}{ccc} \text{初始化硬件} & \rightarrow & \text{验证头部} \\ \downarrow & & \downarrow \\ \text{DDR预处理} & \rightarrow & \text{加载分区} \\ & \searrow & \downarrow \\ & & \text{移交控制权} \end{array} 初始化硬件DDR预处理验证头部加载分区移交控制权

六、 关键数据流与硬件交互

数据加载路径

QSPI Flash → AXI Quad-SPI控制器 OCM缓存 → DMA DDR3 \text{QSPI Flash} \xrightarrow{\text{AXI Quad-SPI控制器}} \text{OCM缓存} \xrightarrow{\text{DMA}} \text{DDR3} QSPI FlashAXI Quad-SPI控制器 OCM缓存DMA DDR3

  • 性能优化
    • 启用DMA传输(XQspiPs_DmaTransfer()
    • 使用线性突发模式(QSPI配置为DDR模式,时钟速率83MHz)
安全认证流程

原始镜像 → SHA-3/384 哈希值 哈希值 → RSA-2048签名 验签结果 \begin{aligned} &\text{原始镜像} \xrightarrow{\text{SHA-3/384}} \text{哈希值} \\ &\text{哈希值} \xrightarrow{\text{RSA-2048签名}} \text{验签结果} \end{aligned} 原始镜像SHA-3/384 哈希值哈希值RSA-2048签名 验签结果

  • 抗攻击设计
    • 哈希计算前会清空CSU的密钥缓存(XSecure_CsuAesKcvClear()
    • 签名失败触发安全锁定(通过XSecure_SetTamperConfig()

七、调试与错误处理

调试宏启用
#define FSBL_DEBUG  // 启用调试输出
  • 典型输出
    XFsbl_Debug: Partition 0 Loaded at 0x00100000 (Size 1MB)
    XFsbl_Debug: PL Bitstream CRC Check Passed
    
** 错误码定义**
#define XFSBL_ERROR_BOOTHEADER   0x1000  // 头部校验失败
#define XFSBL_ERROR_AUTHFAIL     0x1001  // RSA验签错误
#define XFSBL_ERROR_PLLLOCK      0x1002  // 时钟锁相环失锁
  • 错误处理
    • 记录错误到PMU全局状态寄存器(XFsbl_WriteReg(PMU_GLOBAL_GLOB_GEN_STORAGE, errCode)
    • 触发系统复位(XFsbl_FallbackReset()

**八、 总结 **

L o a d B o o t I m a g e ( ) LoadBootImage() LoadBootImage()作为Zynq7000启动链的核心,其执行涵盖硬件初始化、安全认证、多阶段加载三大模块。函数首先通过 F s b l H o o k B e f o r e B i t s t r e a m D d r ( ) FsblHookBeforeBitstreamDdr() FsblHookBeforeBitstreamDdr()完成DDR时序微调与性能监控启动,随后 X F s b l L o a d P a r t i t i o n s ( ) XFsbl_LoadPartitions() XFsblLoadPartitions()深度解析Boot Header结构,利用CSU硬件模块实现RSA-2048/SHA-3安全认证,并依据分区属性(PL比特流或PS应用)选择PCAP配置或ELF加载机制。关键点包括:通过DevCfg接口的PL动态重配置、基于XLAT表的非对齐地址访问补偿、以及DMA加速的QSPI数据传输。移交控制权前,函数会强制刷新数据缓存(确保内存一致性)并通过CRL_APB寄存器组重配时钟域。调试方面,FSBL_DEBUG宏可实时输出分区加载状态,而错误处理机制将异常状态固化至PMU寄存器,为后续故障分析提供关键日志。该函数的设计充分体现了Zynq架构中PS-PL协同、硬件安全加速、以及多级启动链的技术特点。


:具体实现细节需参考对应版本的 f s b l _ h o o k s . c fsbl\_hooks.c fsbl_hooks.c x f s b l _ p a r t i t i o n l o a d . c xfsbl\_partition_load.c xfsbl_partitionload.c源码文件。

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.coloradmin.cn/o/2313466.html

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈,一经查实,立即删除!

相关文章

Ubuntu 24.04 安装与配置 JetBrains Toolbox 指南

&#x1f4cc; 1. JetBrains Toolbox 介绍 JetBrains Toolbox 是 JetBrains 开发的工具管理器&#xff0c;可用于安装、更新和管理 IntelliJ IDEA、PyCharm、WebStorm、CLion 等。本指南记录了 JetBrains Toolbox 在 Ubuntu 24.04 上的 安装、路径调整、权限管理 及 遇到的问题…

【AI】神经网络|机器学习——图解Transformer(完整版)

Transformer是一种基于注意力机制的序列模型,最初由Google的研究团队提出并应用于机器翻译任务。与传统的循环神经网络(RNN)和卷积神经网络(CNN)不同,Transformer仅使用自注意力机制(self-attention)来处理输入序列和输出序列,因此可以并行计算,极大地提高了计算效率…

【VUE2】第二期——生命周期及工程化

目录 1 生命周期 1.1 介绍 1.2 钩子 2 可视化图表库 3 脚手架Vue CLI 3.1 使用步骤 3.2 项目目录介绍 3.3 main.js入口文件代码介绍 4 组件化开发 4.1 组件 4.2 普通组件注册 4.2.1 局部注册 4.2.2 全局注册 1 生命周期 1.1 介绍 Vue生命周期&#xff1a;就是…

贪心算法三

> 作者&#xff1a;დ旧言~ > 座右铭&#xff1a;松树千年终是朽&#xff0c;槿花一日自为荣。 > 目标&#xff1a;了解什么是贪心算法&#xff0c;并且掌握贪心算法。 > 毒鸡汤&#xff1a;有些事情&#xff0c;总是不明白&#xff0c;所以我不会坚持。早安! >…

猫耳大型活动提效——组件低代码化

1. 引言 猫耳前端在开发活动的过程中&#xff0c;经历过传统的 pro code 阶段&#xff0c;即活动页面完全由前端开发编码实现&#xff0c;直到 2020 年接入公司内部的低代码活动平台&#xff0c;满足了大部分日常活动的需求&#xff0c;运营可自主配置活动并上线&#xff0c;释…

机器学习 Day02,matplotlib库绘图

1.matplotlib图像结构 容器层&#xff1a;画板&#xff0c;画布&#xff0c;坐标系辅助层&#xff1a;刻度&#xff0c;标题&#xff0c;网格&#xff0c;图例等图像层&#xff1a;折线图&#xff08;主讲&#xff09;&#xff0c;饼图&#xff0c;直方图&#xff0c;柱状图等…

MySQL中有哪几种锁?

大家好&#xff0c;我是锋哥。今天分享关于【MySQL中有哪几种锁&#xff1f;】面试题。希望对大家有帮助&#xff1b; MySQL中有哪几种锁&#xff1f; 1000道 互联网大厂Java工程师 精选面试题-Java资源分享网 在 MySQL 中&#xff0c;锁是用于确保数据的一致性和并发控制的机…

Unity单例模式更新金币数据

单例模式&#xff08;Singleton Pattern&#xff09;是一种创建型设计模式&#xff0c;它确保一个类只有一个实例&#xff0c;并提供一个全局访问点来获取该实例。在游戏开发中&#xff0c;单例模式非常适合用于管理全局唯一的数据&#xff0c;比如玩家的金币数量。通过使用单例…

【javaEE】多线程(进阶)

1.❤️❤️前言~&#x1f973;&#x1f389;&#x1f389;&#x1f389; Hello, Hello~ 亲爱的朋友们&#x1f44b;&#x1f44b;&#xff0c;这里是E绵绵呀✍️✍️。 如果你喜欢这篇文章&#xff0c;请别吝啬你的点赞❤️❤️和收藏&#x1f4d6;&#x1f4d6;。如果你对我的…

Vue3实战学习(Element-Plus常用组件的使用(输入框、下拉框、单选框多选框、el-image图片))(上)(5)

目录 一、Vue3工程环境配置、项目基础脚手架搭建、Vue3基础语法、Vue3集成Element-Plus的详细教程。(博客链接如下) 二、Element-Plus常用组件使用。 &#xff08;1&#xff09;el-input。(input输入框) <1>正常状态的el-input。 <2>el-input的disable状态。 <3…

C++ 链表List使用与实现:拷贝交换与高效迭代器细致讲解

目录 list的使用&#xff1a; 构造与赋值 元素访问 修改操作 容量查询 链表特有操作 拼接&#xff08;Splice&#xff09; C11 新增方法 注意&#xff1a; stl_list的模拟实现&#xff1a; 一、链表节点设计的艺术 1.1 结构体 vs 类的选择 二、迭代器实现的精髓 2…

知乎后台管理系统:数据库系统原理实验1——数据库基础概念

实验背景 通过练习绘制语义网络&#xff0c;加深对于基本概念之间关系的理解和掌握。掌握在VISIO中绘制能准确表达基本概念之间关系的语义网络的技能。了解并比较数据模型的Chen’s表示法和UML表示法。理解关系模型设计中的完整性约束的重要性。掌握在Linux操作系统下远程访问…

docker compose 以redis为例

常见docker compose 命令 》》注意这个是旧版本的&#xff0c;新版本 docker 与compose 之间没有 - 新版本的 docker compose 把 version 取消了 &#xff0c;redis 默认是没有配置文件的 &#xff0c;nginx&#xff0c;mysql 默认是有的 services:redis:image: redis:lat…

ES C++客户端安装及使用

1. ES 介绍 Elasticsearch &#xff0c; 简称 ES &#xff0c;它是个开源分布式搜索引擎&#xff0c;它的特点有&#xff1a;分布式&#xff0c;零配 置&#xff0c;自动发现&#xff0c;索引自动分片&#xff0c;索引副本机制&#xff0c; restful 风格接口&#xff0c;多…

【软件工程】一篇入门UML建模图(状态图、活动图、构件图、部署图)

&#x1f308; 个人主页&#xff1a;十二月的猫-CSDN博客 &#x1f525; 系列专栏&#xff1a; &#x1f3c0;软件开发必练内功_十二月的猫的博客-CSDN博客 &#x1f4aa;&#x1f3fb; 十二月的寒冬阻挡不了春天的脚步&#xff0c;十二点的黑夜遮蔽不住黎明的曙光 目录 1. 前…

应急响应--流量分析

&#xff08;一&#xff09;Cobalt Strike流量特征分析 1.HTTP特征 源码特征&#xff1a; 在流量中&#xff0c;通过http协议的url路径&#xff0c;在checksum8解密算法计算后&#xff0c;32位的后门得到的结果是92&#xff0c;64位的后门得到的结果是93&#xff0c;该特征符…

自然语言处理:高斯混合模型

介绍 大家好&#xff0c;博主又来给大家分享知识了&#xff0c;今天给大家分享的内容是自然语言处理中的高斯混合模型。 在自然语言处理这个充满挑战与机遇的领域&#xff0c;我们常常面临海量且复杂的文本数据。如何从这些数据中挖掘出有价值的信息&#xff0c;对文本进行有…

【C++指南】一文总结C++类和对象【中】

&#x1f31f; 各位看官好&#xff0c;我是egoist2023&#xff01; &#x1f30d; 种一棵树最好是十年前&#xff0c;其次是现在&#xff01; &#x1f680; 今天来学习C类和对象的语法知识。注意&#xff1a;在本章节中&#xff0c;小编会以Date类举例 &#x1f44d; 如果觉得…

再聊 Flutter Riverpod ,注解模式下的 Riverpod 有什么特别之处,还有发展方向

三年前我们通过 《Flutter Riverpod 全面深入解析》 深入理解了 riverpod 的内部实现&#xff0c;而时隔三年之后&#xff0c;如今Riverpod 的主流模式已经是注解&#xff0c;那今天就让我们来聊聊 riverpod 的注解有什么特殊之处。 前言 在此之前&#xff0c;我们需要先回忆…

Go语言集成DeepSeek API和GoFly框架文本编辑器实现流式输出和对话(GoFly快速开发框架)

说明 本文是GoFly快速开发框架集成Go语言调用 DeepSeek API 插件&#xff0c;实现流式输出和对话功能。为了方便实现更多业务功能我们在Go服务端调用AI即DeepSeek接口&#xff0c;处理好业务后再用Gin框架实现流失流式输出到前端&#xff0c;前端使用fetch请求接收到流式的mar…