LeetCode 周赛 333,你管这叫 Medium 难度?

news2024/12/23 11:06:02

本文已收录到 AndroidFamily,技术和职场问题,请关注公众号 [彭旭锐] 提问。

大家好,我是小彭。

上周是 LeetCode 第 333 场周赛,你参加了吗?这场周赛质量很高,但难度标得不对,我真的会谢。算法解题思维需要长时间锻炼,加入我们一起刷题吧~


小彭的 Android 交流群 02 群已经建立啦,公众号回复 “加群” 加入我们~


2570. 合并两个二维数组 - 求和法(Easy)

题目地址

https://leetcode.cn/problems/merge-two-2d-arrays-by-summing-values/

题目描述

给你两个 二维 整数数组 nums1 和 nums2.

  • nums1[i] = [idi, vali] 表示编号为 idi 的数字对应的值等于 vali 。
  • nums2[i] = [idi, vali] 表示编号为 idi 的数字对应的值等于 vali 。

每个数组都包含 互不相同 的 id ,并按 id 以 递增 顺序排列。

请你将两个数组合并为一个按 id 以递增顺序排列的数组,并符合下述条件:

  • 只有在两个数组中至少出现过一次的 id 才能包含在结果数组内。
  • 每个 id 在结果数组中 只能出现一次 ,并且其对应的值等于两个数组中该 id 所对应的值求和。如果某个数组中不存在该 id ,则认为其对应的值等于 0 。

返回结果数组。返回的数组需要按 id 以递增顺序排列。

题解

简单模拟题,使用双指针合并数组即可。

class Solution {
    fun mergeArrays(nums1: Array<IntArray>, nums2: Array<IntArray>): Array<IntArray> {
        val n = nums1.size
        val m = nums2.size
        val result = LinkedList<IntArray>()
        var index1 = 0
        var index2 = 0
        while (index1 < n && index2 < m) {
            val e1 = nums1[index1]
            val e2 = nums2[index2]
            if (e1[0] == e2[0]) {
                result.add(intArrayOf(e1[0], e1[1] + e2[1]))
                index1++
                index2++
            } else if (e1[0] < e2[0]) {
                result.add(e1)
                index1++
            } else {
                result.add(e2)
                index2++
            }
        }
        while (index1 < n) {
            result.add(nums1[index1++])
        }
        while (index2 < m) {
            result.add(nums2[index2++])
        }
        return result.toTypedArray()
    }
}

复杂度分析:

  • 时间复杂度: O ( n + m ) O(n + m) O(n+m)
  • 空间复杂度: O ( 1 ) O(1) O(1)

2571. 将整数减少到零需要的最少操作数(Medium)

题目地址

https://leetcode.cn/problems/minimum-operations-to-reduce-an-integer-to-0/

题目描述

给你一个正整数 n ,你可以执行下述操作 任意 次:

  • n 加上或减去 2 的某个 

返回使 n 等于 0 需要执行的 最少 操作数。

如果 x == 2i 且其中 i >= 0 ,则数字 x 是 2 的幂。

题解一(贪心 + 记忆化递归)

这道题在竞赛时的标签是 Easy,实际上应该是 Medium,收录到题库后官方也改成 Medium了。

题目明显是决策模型,首先要想到回溯、贪心、动态规划等思路。

如果用暴力回溯如何解决呢?显然,在每一轮决策中,我们可以选择数字的二进制表示中任意一个 “1”,并相应地加上 2 k 2^k 2k 或减去 2 k 2^k 2k,终止条件为剩下最后一个 “1” 时,必然减去 2 k 2^k 2k

事实上,我们发现在每一轮决策中并不需要枚举所有选择,只需要从最低位的 “1” 开始消除,最终总能得到最优解。这是因为最低位受到的约束最小,低位的加法会影响高位并产生连续的 111,有可能使结果更优,而高位的加减对低位没有影响,不会对结果产生更优解。

所以我们的算法是:获取当前数字最低位的 1 = 2 k 1= 2^k 1=2k,尝试加上 2 k 2^k 2k 或减去 2 k 2^k 2k 并将问题转换为规模更小的数,直到剩下的数正好是 2 的幂结束。递归过程中会存在重复状态,所以需要加上记忆化剪枝。

class Solution {
    // 备忘录
    private val memo = HashMap<Int, Int>()

    fun minOperations(n: Int): Int {
        // n 是 2 的幂
        if (n and (n - 1) == 0) return 1
        if (memo.containsKey(n)) return memo[n]!!
        // 最低位 1
        val lowbit = n and -n
        val result = 1 + Math.min(minOperations(n + lowbit), minOperations(n - lowbit))
        memo[n] = result
        return result
    }
}

复杂度分析:

  • 时间复杂度: O ( C ) O(C) O(C) 其中 C C C 是所有测试用例合并的状态数,每个状态的时间复杂度是 O ( 1 ) O(1) O(1)。如果以单个测试用例分析复杂度,则时间复杂度是 O ( c ) O(c) O(c) c c c 是 int 的位数。
  • 空间复杂度: O ( C ) O(C) O(C) 散列表空间。

题解二(贪心 + 统计 1 的个数)

我们发现: 当执行某个操作后,使得二进制中 1 的个数更少的方案最终总的操作次数一定更低。

例如:当最低位 1 是连续的多个 111 时,采用加法可以一次性消除多个 “1”,否则减法固定消除单个 “1” 更优。

  • 1011, 1101:加法后 = 1011, 1110,减法后:1011, 1100(减法更优)
  • 1011, 1111:加法后 = 1100, 0000,减法后:1011, 1110(加法更优)

因此我们的算法是:在每一步选择中直接以试错的方式做贪心选择,先比较操作后结果中二进制中 1 的个数,再选择更优的操作。

class Solution {
    fun minOperations(n: Int): Int {
        var num = n
        var operateCount = 0
        while (num != 0) {
            // 最低位 1
            val lowbit = num and -num
            // 直接判断
            if (Integer.bitCount(num + lowbit) <= Integer.bitCount(num - lowbit)) {
                num += lowbit
            } else {
                num -= lowbit
            }
            operateCount++
        }
        return operateCount
    }
}

复杂度分析:

  • 时间复杂度: O ( m l g m ) O(mlgm) O(mlgm) 其中 m m m 是数字中 1 的个数,单次统计位 1 的操作时间复杂度是 O ( l g m ) O(lgm) O(lgm)
  • 空间复杂度: O ( 1 ) O(1) O(1) 只使用常数级别空间。

题解三(位运算优化)

思路参考:灵茶山艾府的题解

继续题解二的思路,连续多个 1 的最优解是先加上 lowbit 再减去 lowbit,那么最多需要操作两次,而单个 1 的最优解是直接减去 lowbit,最多只要操作一次。

我们发现:

// 连续 1 的情况:
n        = 0011, 1111
3n       = 1011, 1101
n xor 3n = 1000, 0010 // 正好得到 2 个 1

// 单个 1 的情况:
n        = 0100
3n       = 1100
n xor 3n = 1000 // 正好得到 1 个 1

因此答案就是 n xor 3n 中 1 的个数。

class Solution {
    fun minOperations(n: Int): Int {
        return Integer.bitCount(n xor 3 * n)
    }
}

复杂度分析:

  • 时间复杂度: O ( 1 ) O(1) O(1)
  • 空间复杂度: O ( 1 ) O(1) O(1)

2572. 无平方子集计数(Medium)

题目地址

https://leetcode.cn/problems/count-the-number-of-square-free-subsets/

题目描述

给你一个正整数数组 nums 。

如果数组 nums 的子集中的元素乘积是一个 无平方因子数 ,则认为该子集是一个 无平方 子集。

无平方因子数 是无法被除 1 之外任何平方数整除的数字。

返回数组 nums 中 无平方 且 非空 的子集数目。因为答案可能很大,返回对 109 + 7 取余的结果。

nums 的 非空子集 是可以由删除 nums 中一些元素(可以不删除,但不能全部删除)得到的一个数组。如果构成两个子集时选择删除的下标不同,则认为这两个子集不同。

预备知识

  • 质数 / 素数:只能被 1 和本身整除的数,例如 3,5,7;
  • 合数:除了能被 1 和本身整除外,还能被其他数整除的数。也可以理解为由多个不为 1 的质数相乘组成的数,例如 4 = 2 * 2,6 = 2 * 3。
  • 1 既不是质数也不是合数。
  • 质因数分解:将合数分解为多个质数相乘的形式,其中的质数就是合数的质因子。例如 10 包含质因子 2 和 5,12 包含质因子 2 和 3。
  • 状态压缩:用一个维度(通常是二进制数)表示所有物品存在或不存在的状态。

题解一(状态压缩 + 01 背包)

这道题的标签是 Medium,但实际上是 Hard。

题目的核心是求 “乘积是无平方因子数的子集” 数目,显然有:

  • 1、当子集中存在平方数时,该子集一定不是解。 例如子集中存在 49 或 25 时,子集的乘积一定存在平方因子;
  • 2、当子集中任意两个数存在相同的质因子时,该子集一定不是解。 例如子集中存在 62,这两个数都存在相同的质因子 “2”,因此它们的乘积一定存在平方因子。
  • 3、我们观察到本题的输入数据范围只有 [1, 30],30 以内的质数只有 2, 3, 5, 7, 11, 13, 17, 19, 23, 29 总共 10 个数, 所以我们可以预先对 2 ~ 30 的数字进行质因数分解,并且使用二进制掩码 Mask 记录数字是否包含某个质因子。 例如:
    • 00, 0000, 0011:表示存在质因子 2 和 3
    • 11, 1111, 1111:表示存在所有质因子(只是举例,本题不存在)

所以,我们的算法思路应该是: 从数字列表选择中若干个数,如果所有质因子的出现次数不超过 1,则可以组成合法的子集, 例如 [3, 5] 中所有质因子最多只出现 1 次,因此构成一个合法的子集。

“从数字列表选择中若干个数”, 由此我们发现原问题可以转换为熟悉背包问题 —— 计算背包可以容纳的物品组合方案数:

  • 物品:每一个数字是一个不可分割的物品,我们不可能选择半个数;
  • 物品体积:每个物品所包含的质因子就是该物品的体积;
  • 背包容积:背包容积为 10,即背包最多只能包含 10 个质因子;
  • 限制条件:背包内的数字的质因子不能重复。

完成问题转换后,按照熟悉的背包问题模板解决即可:

  • 状态转移方程:dp[i][j] = dp[i - 1][j] + dp[i - 1][j xor mask]
class Solution {

		companion object {
        private val MOD = 1000000007
        private val primeList = listOf(2, 3, 5, 7, 11, 13, 17, 19, 23, 29)
        private val masks = IntArray(31).apply {
            for (i in 2..30) {
                for ((j, prime) in primeList.withIndex()) {
                    // 过滤平方因子数
                    if (i % (prime * prime) == 0) {
                        this[i] = -1
                        break
                    }
                    // 记录质因子
                    if (i % prime == 0) this[i] = this[i] or (1 shl j)
                }
            }
        }
    }

    fun squareFreeSubsets(nums: IntArray): Int {
        // 背包问题

        // 过滤平方因子数(数字 1 的 mask == 0)
        val numsFiltered = nums.filter { masks[it] >= 0 }
        // 物品总数
        val n = numsFiltered.size
        // 背包容积 11,1111,1111
        val amount = (1 shl 10) - 1
        // dp[i][j] 表示选择前 i 个物品且体积为 j 的方案数
        val dp = Array(n + 1) { IntArray(amount + 1) }.apply {
            // 选择前 i 个物品且体积为 0 的方案为 1
            this[0][0] = 1
        }
        // 枚举物品
        for (i in 1..n) {
            // 物品的质因子属性
            val mask = masks[numsFiltered[i - 1]]
            // 枚举体积
            for (j in 0..amount) {
                dp[i][j] = dp[i - 1][j]
                // j | mask == j => mask 是 j 的子集
                if (j or mask == j) dp[i][j] += dp[i - 1][j xor mask]
            }
        }
        // 题目不要求背包装满,所以 dp[n - 1][...] 的方案都包含,最后再去掉空集
        return dp[n].sum() - 1
    }
}

考虑大数越界问题:

fun squareFreeSubsets(nums: IntArray): Int {
    // 背包问题

    // 过滤平方因子数(数字 1 的 mask == 0)
    val numsFiltered = nums.filter { masks[it] >= 0 }
    // 物品总数
    val n = numsFiltered.size
    // 背包容积 11,1111,1111
    val amount = (1 shl 10) - 1
    // dp[i][j] 表示选择前 i 个物品且体积为 j 的方案数
    val dp = Array(n + 1) { IntArray(amount + 1) }.apply {
        // 选择前 i 个物品且体积为 0 的方案为 1
        this[0][0] = 1
    }
    // 枚举物品
    for (i in 1..n) {
        // 物品的质因子属性
        val mask = masks[numsFiltered[i - 1]]
        // 枚举体积
        for (j in 0..amount) {
            dp[i][j] = dp[i - 1][j]
            // j | mask == j => mask 是 j 的子集
            if (j or mask == j) dp[i][j] = (dp[i][j] + dp[i - 1][j xor mask]) % MOD
        }
    }
    // 题目不要求背包装满,所以 dp[n - 1][...] 的方案都包含,最后再去掉空集
    var sum = 0L
    for (count in dp[n]) {
        sum += count
    }
    return ((sum - 1 + MOD) % MOD).toInt()
}

01 背包问题可以取消物品维度降低空间复杂度:

fun squareFreeSubsets(nums: IntArray): Int {
    // 背包问题

    // 物品总数
    val n = nums.size
    // 背包容积 11,1111,1111
    val amount = (1 shl 10) - 1
    // dp[i][j] 表示选择前 i 个物品且体积为 j 的方案数
    val dp = IntArray(amount + 1).apply {
        // 选择前 i 个物品且体积为 0 的方案为 1
        this[0] = 1
    }
    // 枚举物品
    for (i in 1..n) {
        // 物品的质因子属性
        val mask = masks[nums[i - 1]]
        // 过滤平方因子数
        if (mask < 0) continue
        // 枚举体积(从大到小遍历)
        for (j in amount downTo 0) {
            // j | mask == j => mask 是 j 的子集
            if (j or mask == j) dp[j] = (dp[j] + dp[j xor mask]) % MOD
        }
    }
    // 题目不要求背包装满,所以 dp[n - 1][...] 的方案都包含,最后再去掉空集
    var sum = 0L
    for (count in dp) {
        sum += count
    }
    return ((sum - 1 + MOD) % MOD).toInt()
}

复杂度分析:

  • 时间复杂度: O ( n 2 m ) O(n^{2m}) O(n2m) 其中 n n n n u m s nums nums 数组的长度, m m m 是质数的个数(m ≤ 10)。
  • 空间复杂度: O ( 2 2 m + 31 ) O(2^{2m} + 31) O(22m+31) d p dp dp 数组空间与预处理的二进制掩码数组。

题解二(计数优化)

题解一还有优化空间。

在外层循环中,我们枚举的是物品维度,如果同一个物品中存在多个时,会存在重复计算。因此,我们可以预处理物品列表,统计不同物品的出现次数。举例说明:

  • 在物品列表 [3, 3, 5] 中物品 [3] 出现了两次,而这两个物品 3 都可以和物品 [5] 组成目标子集,总个数 = [3] 出现次数 * 其他子集个数;
  • 物品 1 较特殊,在物品列表 [1, 1, 5] 中,物品 [1] 可以与物品 [5] 组成目标子集,同时任意个数的 [1, 1] 也可以 [5] 组成目标子集,总个数 = 2 [ 1 ] 出现次数 2^{[1] 出现次数} 2[1]出现次数 * 其他子集个数;
class Solution {

    companion object {
        private val MOD = 1000000007
        private val primeList = listOf(2, 3, 5, 7, 11, 13, 17, 19, 23, 29)
        private val masks = IntArray(31).apply {
            for (i in 2..30) {
                for ((j, prime) in primeList.withIndex()) {
                    // 过滤平方因子数
                    if (i % (prime * prime) == 0) {
                        this[i] = -1
                        break
                    }
                    // 记录质因子
                    if (i % prime == 0) this[i] = this[i] or (1 shl j)
                }
            }
        }
    }

    fun squareFreeSubsets(nums: IntArray): Int {
        // 元素计数
        var pow1 = 1L
        val cnts = IntArray(31).apply {
            for (element in nums) {
                if (element == 1) pow1 = pow1 * 2 % MOD else this[element]++
            }
        }
        // 物品总数
        val n = nums.size
        // 背包容积 11,1111,1111
        val amount = (1 shl 10) - 1
        // dp[i][j] 表示选择前 i 个物品且体积为 j 的方案数
        val dp = LongArray(amount + 1).apply {
            // 选择前 i 个物品且体积为 0 的方案为 1
            this[0] = 1
        }
        // 枚举去重物品
        for ((num, cnt) in cnts.withIndex()) {
            // 物品的质因子属性
            val mask = masks[num]
            // 过滤不存在的物品
            if (cnt <= 0) continue
            // 过滤平方因子数和 1 
            if (mask <= 0) continue
            // 枚举体积(从大到小遍历)
            for (j in amount downTo 0) {
                // j | mask == j => mask 是 j 的子集
                if (j or mask == j) dp[j] = (dp[j] + dp[j xor mask] * cnt) % MOD
            }
        }
        // 题目不要求背包装满,所以 dp[n - 1][...] 的方案都包含,最后再去掉空集
        var sum = 0L
        for (count in dp) {
            sum = (sum + count) % MOD
        }
        // 1 的任意组合可以与其他子集组合
        return ((sum * pow1 - 1 + MOD) % MOD).toInt()
    }
}

复杂度分析:

  • 时间复杂度: O ( n + q 2 m ) O(n + q^{2m}) O(n+q2m) 其中 n n n n u m s nums nums 数组的长度, m m m 是质数的个数(m ≤ 10), q q q 是输入数据范围内非平方因子数的个数 ( q ≤ 18 ) (q ≤ 18) q18
  • 空间复杂度: O ( 2 2 m + 31 ) O(2^{2m} + 31) O(22m+31) d p dp dp 数组空间与预处理的二进制掩码数组。

2573. 找出对应 LCP 矩阵的字符串(Hard)

题目地址

https://leetcode.cn/problems/find-the-string-with-lcp/description/

题目描述

对任一由 n 个小写英文字母组成的字符串 word ,我们可以定义一个 n x n 的矩阵,并满足:

  • lcp[i][j] 等于子字符串 word[i,...,n-1] 和 word[j,...,n-1] 之间的最长公共前缀的长度。

给你一个 n x n 的矩阵 lcp 。返回与 lcp 对应的、按字典序最小的字符串 word 。如果不存在这样的字符串,则返回空字符串。

对于长度相同的两个字符串 a 和 b ,如果在 a 和 b 不同的第一个位置,字符串 a 的字母在字母表中出现的顺序先于 b 中的对应字母,则认为字符串 a 按字典序比字符串 b 小。例如,"aabd" 在字典上小于 "aaca" ,因为二者不同的第一位置是第三个字母,而 'b' 先于 'c' 出现。

预备知识

LCP 矩阵的定义是一个字符串中的 [i, 字符串末尾][j, 字符串末尾] 两个子串的最长公共前缀的长度。根据定义可以得出基本性质:

  • 性质 1:当 LCP[i][j] 等于 0 时,位于 str[i]str[j] 的两个字符一定不相同;反之当 LCP[i][j] 大有 0 时,位于 str[i]str[j] 的两个字符一定相同。
  • 性质 2:LCP 矩阵的定义可以利用动态规划推导(与两个字符串的最长公共前缀类似):
    • str[i] == str[j] 时,LCP[i][j] = 0(无共同前缀)
    • str[i] == str[j] 时,LCP[i][j] = LCP[i + 1][j + 1] + 1

题解(贪心构造 + 动态规划)

贪心思路: 题目要求输出满足 LCP 矩阵的字典序最小的结果,那么我们应该优先选择数值最小的字母 ‘a’。

可以用反证法证明:假设 “bcbc” 是满足条件且字典序最小的结果,那么我们可以将 ‘b’ 映射为 ‘a’,而 ‘c’ 映射为 ‘b’ 得到 “abab”。由于 LCP 矩阵只考虑公共前缀长度而不考虑字母,所以 “abab” 一定符合同一个 LCP 矩阵定义,与假设矛盾。

因此,我们的算法思路是:从 s[0] 开始填入 ‘a’,并根据 LCP[0][j] > 0 将所有 s[j] 设置为同一个字符 ‘a’,依此类推。从下一个未填入的位置开始填入 ‘b’,并将所有相同的 LCP[i][j] > 0 的位置填入 ‘b’,直到字符串结束或候选字符大于 ‘z’ 结束。

class Solution {
    fun findTheString(lcp: Array<IntArray>): String {
        // 目标字符串长度
        val n = lcp.size
        // 1、构造字符串
        // 目标字符串
        val charArray = CharArray(n) { ' ' }
        // 候选字符序列 'a' -> 'z'
        var candidate = 'a'
        var i = 0
        while (i < n) {
            // 当前位置已经填充
            if (charArray[i] != ' ') {
                i++
                continue
            }
            // 候选字符不够
            if (candidate > 'z') {
                return ""
            }
            // 填充相同字符的位置,并且使用字典序最小的候选字符
            for (j in i until n) {
                if (lcp[i][j] > 0) charArray[j] = candidate
            }
            // 下一个候选字符
            candidate += 1
            i++
        }
        return String(charArray)
    }
}

使用贪心算法构造出字符串后,我们还需要检查字符串是否符合 LCP 矩阵的定义。这是因为构造时只考虑 Lcp[i][j] > 0,但至于具体大于 0 的什么数并没有考虑,所以我们还需要验证的过程:

class Solution {
    fun findTheString(lcp: Array<IntArray>): String {
        // 目标字符串长度
        val n = lcp.size
        // 1、构造字符串
        ...
        // 2、检查字符串是否符合 LCP(因为构造时只考虑 lcp[i][j] > 0)
        for (i in n - 1 downTo 0) {
            for (j in n - 1 downTo 0) {
                if (charArray[i] == charArray[j]) {
                    if (i == n - 1 || j == n - 1) {
                        if (lcp[i][j] != 1) return ""
                    } else {
                        if (lcp[i][j] != lcp[i + 1][j + 1] + 1) return ""
                    }
                } else {
                    if (lcp[i][j] != 0) return ""
                }
            }
        }
        return String(charArray)
    }
}

复杂度分析:

  • 时间复杂度: O ( n 2 ) O(n^2) O(n2) 构造与验证都是 O ( n 2 ) O(n^2) O(n2) 级别。
  • 空间复杂度: O ( 1 ) O(1) O(1) 不考虑结果字符串,只使用了常数级别变量。

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.coloradmin.cn/o/360880.html

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈,一经查实,立即删除!

相关文章

深度学习在视频多目标跟踪中的应用综述

文章目录摘要1、简介2、MOT:算法、指标和数据集2.1、MOT算法简介2.2、指标经典的指标完整的MOT指标ID 分数2.3、基准数据集3、MOT中的深度学习3.1、深度学习中的检测步骤3.1.1、Faster R-CNN3.1.2、SSD3.1.3、Other detectors3.1.4、cnn在检测步骤中的其他用途3.2、深度学习在特…

Git的常用命令

1&#xff1a;软件安装1.1&#xff1a;Git下载与安装百度上搜索Git官网&#xff1a;https://git-scm.com/下载&#xff1a;https://git-scm.com/download/win下载Git安装程序&#xff0c;双击安装 Git-2.9.3.2-64-bit.exe配置环境变量path 使用git --version查看 git 是否安装成…

儿童袖套上架美国亚马逊CPC认证

袖套&#xff0c;也称套袖。是戴在袖管外的套子&#xff0c;旨在保护衣服的袖管。通常戴时松垂于另外一只衣袖外面的袖子。美国CPC认证简介&#xff1a;CPC认证是Children’s Product Certificate的英文简称&#xff0c;CPC证书就类似于国内的质检报告&#xff0c;在通过相关检…

(十七)docker安装RocketMQ

一、简介 操作系统&#xff1a;Linux CentOS 7.3 64位 docker版本&#xff1a;19.03.8 RocketMQ版本&#xff1a;4.3.2 二、实践 1、拉取镜像 docker pull rocketmqinc/rocketmq:4.3.2 2、运行容器 我们先搭建namesrv(Name Server)服务。 它充当路由消息的提供者&#…

vue2提取vue-router的title单独存放,使用i18n实现

成品效果 首先引入i18n(vue-i18n官网文档) 依赖包 npm install vue-i18n8然后单独在src目录下新建一个文件夹lang&#xff0c;存放相对应的变量名称&#xff0c;我这里只做显示中文所以其他引入我都注释了&#xff0c;具体目录如下&#xff1a; src\lang/zh.js部分代码 export…

记一次:request请求总结

前言&#xff1a;和前端联调的时候发现前端人员请求的方式不对&#xff0c;固做此总结问题&#xff1a;request请求方式有多少种&#xff1f;答&#xff1a;Java后端查看有8种&#xff0c;spring-web中的java枚举图如下而使用PostMan查看有15种&#xff0c;如下图GET&#xff0…

前端页面jquery规范写法

使用最新版本的 jQuery 最新版本的 jQuery 会改进性能和增加新功能,若不是为了兼容旧浏览器,建议使用最新版本的 jQuery。以下是三条常见的 jQuery 语句,版本越新,性能越好: $(.elem) $(.elem, context) context.find(.elem) 结果 1.6.2 版执行次数远超两个老版本。 jQ…

eclipse中整理左侧项目栏文件

&#x1f4a1;在使用eclipse的过程中&#xff0c;随着项目越来越多&#xff0c;会使得项目管理变得困难&#xff0c;介绍一下eclipse中对于项目分类存放&#xff08;Java Working Set&#xff09;的解决方案。如果按照默认的方式查看项目列表是这种效果:⭕当创建使用小项目过多…

Prometheus+Grafana监控

1、简介1.1 Prometheus官网地址&#xff1a;https://prometheus.io/Prometheus是一个开源的监控系统&#xff0c;起源于SoundCloud。它由以下几个核心组件构成&#xff1a;数据爬虫&#xff1a; 根据配置的时间定期的通过HTTP抓去metrics数据。time-series 数据库&#xff1a; …

Ubantu 安装到VMware详解

想要在VMware中运行Linux系统&#xff0c;那么就需要Linux系统安装到VMware虚拟机上面。在这里&#xff0c;以把ubantu16.04安装到VMware虚拟机中为教程进行图文讲解&#xff0c;共分为三个步骤&#xff0c;分别是创建新的虚拟机、安装到ubantu系统、安装VMware Tools。 1.1 创…

响应式网络建站公司网站源码+完整教程

分享一个开源的自适应的三网合一的网络建站公司网站的完整源码&#xff0c;当做互联网公司官网特别合适&#xff0c;带完整搭建教程。此款网站源码适用于小程序制作公司、网络公司、网站建设公司等等&#xff0c;这些都可以用这个网站模板&#xff0c;网站整体非常高端大气&…

vue+vite项目部署会遇到的几个问题

今天来打包硅谷外卖项目&#xff0c;通过解决项目中遇到的问题来加深对vite打包的理解。 运行yarn build 报错,报[WARNING] Expected identifier but found “*” [css-syntax-error] 既然zoom:1是没有变化&#xff0c;直接把它去掉即可。 然后继续yarn build 不出所料还是报…

有序表的应用:设计一个增、删、查数据的时间复杂度均为O(logN)的结构

1、题目描述 设计一个结构包含如下三个方法&#xff1a; void add(int index, int num); //把num加入到index位置 int get(int index); //取出index位置的值&#xff08;是自然序的index位置&#xff0c;非排序后&#xff09; void remove(int index); //把index位置上的值删…

【Linux】vim拒绝服务安全漏洞修复

根据国家信息安全漏洞共享平台于2023年2月19日发布的安全漏洞通知&#xff0c;Linux系统自带的vim编辑器存在两个高危安全漏洞&#xff08;CNVD-2023-09166、CNVD-2023-09647&#xff09;&#xff0c;攻击者可以利用该漏洞发起拒绝服务攻击&#xff0c;并可能运行&#xff08;恶…

【编程入门】应用市场(Vue版)

背景 前面已输出多个系列&#xff1a; 《十余种编程语言做个计算器》 《十余种编程语言写2048小游戏》 《17种编程语言10种排序算法》 《十余种编程语言写博客系统》 《十余种编程语言写云笔记》 《N种编程语言做个记事本》 目标 为编程初学者打造入门学习项目&#xff0c;使…

双因素方差分析

一、案例与数据 一家大型商业银行在多地区设有分行&#xff0c;其业务主要是进行基础设施建设&#xff0c;国家重点项目建设&#xff0c;固定资产投资等项目的贷款。近年来&#xff0c;该银行的贷款额平稳增长&#xff0c;但不良贷款额也有较大比例的提高&#xff0c;这给银行…

数据库

一、数据库系统管理 ACID&#xff0c;是指数据库管理系统&#xff08;DBMS&#xff09;在写入或更新资料的过程中&#xff0c;为保证事务&#xff08;transaction&#xff09;是正确可靠的&#xff0c;所必须具备的四个特性&#xff1a;原子性&#xff08;atomicity&#xff0…

【微信小程序】一文带你吃透开发中的常用组件

写在前面 小程序中的组件也是由宿主环境提供的&#xff0c;开发者可以基于组件快速搭建出漂亮的页面结构。 官方把小程序的组件分为了9大类&#xff0c;分别是: 1.视图容器 2.基础内容 3.表单组件 4.导航组件 5.媒体组件 6.地图组件 7.画布组件 …

QMap 判断是否value是否已经存在,结合Sleep函数测试

网上查了资料&#xff0c;基本说的都是通过.value判断是否已经之前的key值&#xff0c;但是尝试.了一下发现有.key的函数&#xff0c;对比着来就感觉这个函数是用来判断是否已经存在value值&#xff0c;于是开始百度也几乎没有找到相关资料&#xff0c;只好自己看官方文档&…

Fortinet推出新一代自研安全芯片,跨所有网络边缘加速网络与安全融合

专注网络与安全融合的全球网络安全领导者 Fortinet&#xff08;NASDAQ&#xff1a;FTNT&#xff09;&#xff0c;近日宣布推出新一代自研安全芯片 FortiSP5&#xff0c;作为 Fortinet ASIC 技术的最新突破&#xff0c;有力推动了分布式网络边缘安全的重大飞跃。FortiSP5 源自 F…