本章重点:
1.算法效率
2.时间复杂度
3.空间复杂度
4. 常见时间复杂度以及复杂度oj练习
目录
1.算法效率
1.2算法的复杂度
2.时间复杂度
2.1 时间复杂度的概念
2.2 大O的渐进表示法
2.3常见时间复杂度计算举例
3.空间复杂度
4. 常见复杂度对比
5.复杂度的oj练习
5.1消失的数字
5.2旋转数组
1.算法效率
1.1 如何衡量一个算法的好坏
如何衡量一个算法的好坏呢?比如对于以下斐波那契数列:
long long Fib(int N)
{
if(N < 3)
return 1;
return Fib(N-1) + Fib(N-2);
}
斐波那契数列的递归实现方式非常简洁,但简洁一定好吗?那该如何衡量其好与坏呢
1.2算法的复杂度
算法在编写成可执行程序后,运行时需要耗费时间资源和空间(内存)资源 。因此衡量一个算法的好坏,一般
是从时间和空间两个维度来衡量的,即时间复杂度和空间复杂度。
时间复杂度主要衡量一个算法的运行快慢,而空间复杂度主要衡量一个算法运行所需要的额外空间。在计算
机发展的早期,计算机的存储容量很小。所以对空间复杂度很是在乎。但是经过计算机行业的迅速发展,计
算机的存储容量已经达到了很高的程度。所以我们如今已经不需要再特别关注一个算法的空间复杂度。
2.时间复杂度
2.1 时间复杂度的概念
可以将算法的时间复杂度看成是一个函数,类似于一个函数式子 F(N) = N,算法中的基本操作的执行次数,为算法的时间复杂度。即:找到某条基本语句与问题规模N之间的数学表达式,就是算出了该算法的时间复杂度。
void Func1(int N)
{
int count = 0;
for (int i = 0; i < N ; ++ i)
{
for (int j = 0; j < N ; ++ j)
{
++count;
}
}
for (int k = 0; k < 2 * N ; ++ k)
{
++count;
}
int M = 10;
while (M--)
{
++count;
}
这个函数执行的基本操作次数:可以用函数式子
来表示当N 变化时候
N = 10 F(N) = 130
N = 100 F(N) = 10210
N = 1000 F(N) = 1002010
对应的函数结果是不同的 那怎么衡量他的时间复杂度呢?实际中我们计算时间复杂度时,我们其实并不一定要计算精确的执行次数,而只需要大概执行次数,那么这里我们使用大O的渐进表示法
2.2 大O的渐进表示法
大O符号(Big O notation):是用于描述函数渐进行为的数学符号。
推导大O阶方法:
1、用常数1取代运行时间中的所有加法常数。
2、在修改后的运行次数函数中,只保留最高阶项。
3、如果最高阶项存在且不是1,则去除与这个项目相乘的常数。得到的结果就是大O阶。
使用大O的渐进表示法以后,Func1的时间复杂度为:
N = 10 F(N) = 100
N = 100 F(N) = 10000
N = 1000 F(N) = 1000000
通过上面我们会发现大O的渐进表示法去掉了那些对结果影响不大的项,简洁明了的表示出了执行次数。
另外有些算法的时间复杂度存在最好、平均和最坏情况:
最坏情况:任意输入规模的最大运行次数(上界)
平均情况:任意输入规模的期望运行次数
最好情况:任意输入规模的最小运行次数(下界)
例如:在一个长度为N数组中搜索一个数据x
最好情况:1次找到
最坏情况:N次找到
平均情况:N/2次找到
在实际中一般情况关注的是算法的最坏运行情况,所以数组中搜索数据时间复杂度为O(N)
2.3常见时间复杂度计算举例
实例1:
// 计算Func2的时间复杂度?
void Func2(int N)
{
int count = 0;
for (int k = 0; k < 2 * N ; ++ k)
{
++count;
}
int M = 10;
while (M--)
{
++count;
}
printf("%d\n", count);
}
最差情况下 运行 2N + 10 大O渐进法 去掉影响因素较小的 以及系数,所以时间复杂度为O(N)
实例2:
// 计算Func3的时间复杂度?
void Func3(int N, int M)
{
int count = 0;
for (int k = 0; k < M; ++ k)
{
++count;
}
for (int k = 0; k < N ; ++ k)
{
++count;
}
printf("%d\n", count);
}
这个程序中并没有介绍M 和N 的大小 所以时间复杂度为O(M + N).
实例3:
// 计算Func4的时间复杂度?
void Func4(int N)
{
int count = 0;
for (int k = 0; k < 100; ++ k)
{
++count;
}
printf("%d\n", count);
}
所有常数的时间复杂度都可以优化到O(1)。
实例4:
// 计算strchr的时间复杂度?
const char * strchr ( const char * str, int character );
寻找字符串函数 最差情况就是O(N)
实例5:
// 计算BubbleSort的时间复杂度?
void BubbleSort(int* a, int n)
{
assert(a);
for (size_t end = n; end > 0; --end)
{
int exchange = 0;
for (size_t i = 1; i < end; ++i)
{
if (a[i-1] > a[i])
{
Swap(&a[i-1], &a[i]);
exchange = 1;
}
}
if (exchange == 0)
break;
}
}
最好的情况下:是顺序的 只需要两两比较,只需要O(N),如果不是有序的 需要每个比较 那就是O(N方)
实例6:
// 计算BinarySearch的时间复杂度?
int BinarySearch(int* a, int n, int x)
{
assert(a);
int begin = 0;
int end = n-1;
while (begin < end)
{
int mid = begin + ((end-begin)>>1);
if (a[mid] < x)
begin = mid+1;
else if (a[mid] > x)
end = mid;
else
return mid;
}
return -1;
}
二分查找,前提是有序 就像折纸一样,最悲观的情况 1 * 2 *2 *2 .......x = N 总共运行了x次
根据指数公式 x =
实例7:
// 计算阶乘递归Fac的时间复杂度?
long long Fac(size_t N)
{
if(0 == N)
return 1;
return Fac(N-1)*N;
不为零 就要运行一次 一直运行到N = 0; 一共N + 1次 去掉没用的那就是O(N)
实例8:
// 计算斐波那契递归Fib的时间复杂度?
long long Fib(size_t N)
{
if(N < 3)
return 1;
return Fib(N-1) + Fib(N-2);
}
悲观计算法 时间复杂度 就是O(N)
3.空间复杂度
空间复杂度也是一个数学表达式,是对一个算法在运行过程中临时占用额外存储空间大小的量度 。
空间复杂度不是程序占用了多少bytes的空间,因为这个也没太大意义,所以空间复杂度算的是变量的个数。
空间复杂度计算规则基本跟实践复杂度类似,也使用大O渐进表示法。
注意:函数运行时所需要的栈空间(存储参数、局部变量、一些寄存器信息等)在编译期间已经确定好了,因
此空间复杂度主要通过函数在运行时候显式申请的额外空间来确定
实例1:
// 计算BubbleSort的空间复杂度?
void BubbleSort(int* a, int n)
{
assert(a);
for (size_t end = n; end > 0; --end)
{
int exchange = 0;
for (size_t i = 1; i < end; ++i)
{
if (a[i-1] > a[i])
{
Swap(&a[i-1], &a[i]);
exchange = 1;
}
}
if (exchange == 0)
break;
}
}
额外变量只有一个 所以空间复杂度是O(1)
实例2:
// 计算Fibonacci的空间复杂度?
// 返回斐波那契数列的前n项
long long* Fibonacci(size_t n)
{
if(n==0)
return NULL;
long long * fibArray = (long long *)malloc((n+1) * sizeof(long long));
fibArray[0] = 0;
fibArray[1] = 1;
for (int i = 2; i <= n ; ++i)
{
fibArray[i] = fibArray[i - 1] + fibArray [i - 2];
}
return fibArray;
}
额外申请了n+ 1 个空间 所以空间复杂度为O(N)
实例3:
// 计算阶乘递归Fac的空间复杂度?
long long Fac(size_t N)
{
if(N == 0)
return 1;
return Fac(N-1)*N;
}
递归调用了N次,开辟了N个栈帧,每个栈帧使用了常数个空间。空间复杂度为O(N)
4. 常见复杂度对比
5.复杂度的oj练习
5.1消失的数字
#include<stdio.h>
// 利用异或的知识点,交换律不改变最终结果,所以 定义一个变量 初始值为0,与数组异或后,在与给定数组异或,剩下的值就是我们要找的
int missingNumber(int* nums, int numsSize)
{
int x = 0;
for (int i = 0; i <= numsSize; i++)// 不缺失,所以正常数组大小比给定数组大小大1
{
x ^= i;
}
for (int i = 0; i < numsSize; i++)
{
x ^= *(nums + i);
}
return x;
}
int main()
{
int nums[100] = { 0 };
int num = sizeof(nums) / sizeof(nums[0]);
for (int i = 0; i < num; i++)
{
scanf("%d", nums[i]);
}
printf("%d", missingNumber(nums, num));
return 0;
}
5.2旋转数组
// 先封装一个转置函数
void reverse(int* pa, int left, int right)
{
while (left < right)
{
int temp = 0;
temp = *(pa + left);
*(pa + left) = *(pa + right);
*(pa + right) = temp;
++left;
--right;
}
}
void rotate(int* nums, int numsSize, int k)
{
if (k >= numsSize)
{
k %= numsSize;
}
// 将前 numsSize - k - 1 个数 转置
reverse(nums, 0, numsSize - k - 1);
// 将后 k 个数 转置
reverse(nums, numsSize - k, numsSize - 1);
// 将整体转置 个数 转置
reverse(nums, 0, numsSize - 1);
}