算法训练营 day50 动态规划 单词拆分 多重背包理论基础
单词拆分
139. 单词拆分 - 力扣(LeetCode)
给你一个字符串 s 和一个字符串列表 wordDict 作为字典。请你判断是否可以利用字典中出现的单词拼接出 s 。
注意:不要求字典中出现的单词全部都使用,并且字典中的单词可以重复使用。
单词就是物品,字符串s就是背包,单词能否组成字符串s,就是问物品能不能把背包装满。
拆分时可以重复使用字典中的单词,说明就是一个完全背包!
-
确定dp数组以及下标的含义
dp[i] : 字符串长度为i的话,dp[i]为true,表示可以拆分为一个或多个在字典中出现的单词。
-
确定递推公式
如果确定dp[j] 是true,且 [j, i] 这个区间的子串出现在字典里,那么dp[i]一定是true。(j < i )。
所以递推公式是 if([j, i] 这个区间的子串出现在字典里 && dp[j]是true) 那么 dp[i] = true。
-
dp数组如何初始化
从递推公式中可以看出,dp[i] 的状态依靠 dp[j]是否为true,那么dp[0]就是递推的根基,dp[0]一定要为true,否则递推下去后面都都是false了。
-
确定遍历顺序
题目中说是拆分为一个或多个在字典中出现的单词,所以这是完全背包。
还要讨论两层for循环的前后顺序。
如果求组合数就是外层for循环遍历物品,内层for遍历背包。
如果求排列数就是外层for遍历背包,内层for循环遍历物品。
而本题其实我们求的是排列数,为什么呢。 拿 s = “applepenapple”, wordDict = [“apple”, “pen”] 举例。“apple”, “pen” 是物品,那么我们要求 物品的组合一定是 “apple” + “pen” + “apple” 才能组成 “applepenapple”。
“apple” + “apple” + “pen” 或者 “pen” + “apple” + “apple” 是不可以的,那么我们就是强调物品之间顺序。所以说,本题一定是 先遍历 背包,再遍历物品。
-
举例推导dp[i]
以输入: s = “leetcode”, wordDict = [“leet”, “code”]为例,dp状态如图:
dp[s.size()]就是最终结果。
class Solution {
public boolean wordBreak(String s, List<String> wordDict) {
boolean[] dp = new boolean[s.length()+1];
Arrays.fill(dp,false);
dp[0] = true;
HashSet<String> set = new HashSet<>(wordDict);
for (int i = 1; i <=s.length(); i++) {
for (int j = 0; j <i; j++) {
if (set.contains(s.substring(j,i)) && dp[j]){
dp[i] = true;
}
}
}
return dp[s.length()];
}
}
多重背包理论基础
有N种物品和一个容量为V 的背包。第i种物品最多有Mi件可用,每件耗费的空间是Ci ,价值是Wi 。求解将哪些物品装入背包可使这些物品的耗费的空间 总和不超过背包容量,且价值总和最大。
多重背包和01背包是非常像的, 为什么和01背包像呢?
每件物品最多有Mi件可用,把Mi件摊开,其实就是一个01背包问题了。
例如:
背包最大重量为10。
物品为:
重量 | 价值 | 数量 | |
---|---|---|---|
物品0 | 1 | 15 | 2 |
物品1 | 3 | 20 | 3 |
物品2 | 4 | 30 | 2 |
问背包能背的物品最大价值是多少?
和如下情况有区别么?
重量 | 价值 | 数量 | |
---|---|---|---|
物品0 | 1 | 15 | 1 |
物品0 | 1 | 15 | 1 |
物品1 | 3 | 20 | 1 |
物品1 | 3 | 20 | 1 |
物品1 | 3 | 20 | 1 |
物品2 | 4 | 30 | 1 |
物品2 | 4 | 30 | 1 |
毫无区别,这就转成了一个01背包问题了,且每个物品只用一次。
改变物品数量为01背包格式
public void testMultiPack1(){
// 版本一:改变物品数量为01背包格式
List<Integer> weight = new ArrayList<>(Arrays.asList(1, 3, 4));
List<Integer> value = new ArrayList<>(Arrays.asList(15, 20, 30));
List<Integer> nums = new ArrayList<>(Arrays.asList(2, 3, 2));
int bagWeight = 10;
for (int i = 0; i < nums.size(); i++) {
while (nums.get(i) > 1) { // 把物品展开为i
weight.add(weight.get(i));
value.add(value.get(i));
nums.set(i, nums.get(i) - 1);
}
}
int[] dp = new int[bagWeight + 1];
for(int i = 0; i < weight.size(); i++) { // 遍历物品
for(int j = bagWeight; j >= weight.get(i); j--) { // 遍历背包容量
dp[j] = Math.max(dp[j], dp[j - weight.get(i)] + value.get(i));
}
System.out.println(Arrays.toString(dp));
}
}
版本二:改变遍历个数
public void testMultiPack2(){
// 版本二:改变遍历个数
int[] weight = new int[] {1, 3, 4};
int[] value = new int[] {15, 20, 30};
int[] nums = new int[] {2, 3, 2};
int bagWeight = 10;
int[] dp = new int[bagWeight + 1];
for(int i = 0; i < weight.length; i++) { // 遍历物品
for(int j = bagWeight; j >= weight[i]; j--) { // 遍历背包容量
// 以上为01背包,然后加一个遍历个数
for (int k = 1; k <= nums[i] && (j - k * weight[i]) >= 0; k++) { // 遍历个数
dp[j] = Math.max(dp[j], dp[j - k * weight[i]] + k * value[i]);
}
System.out.println(Arrays.toString(dp));
}
}
}