我们日常写代码的时候,常常会遇到bug的情况,这个时候像我这样的初学者就会像无头苍蝇一样这里改改那里删删,调试的重要性也就显现出来,这篇文章接着上文来讲解。
上文地址:(8条消息) 适合初学者的超详细实用调试技巧(上)_陈大大陈的博客-CSDN博客
大概分为以下几个部分:
5. 一些调试的实例。
6. 如何写出好(易于调试)的代码。
7. 编程常见的错误。
话不多说,现在开始!
5. 一些调试的实例
5.1 实例一
实现代码:求 1!+2!+3! ...+ n! ;不考虑溢出:
我们失误写出下面的错误代码:
#include<stdio.h>
int main()
{
int i = 0;
int sum = 0;//保存最终结果
int n = 0;
int ret = 1;//保存n的阶乘
scanf("%d", &n);
for(i=1; i<=n; i++)
{
int j = 0;
for(j=1; j<=i; j++)
{
ret *= j;
}
sum += ret;
}
printf("%d\n", sum);
return 0;
}
我们输入1和2时,结果并没有错误。
这时候我们如果输入3,期待输出9,但实际输出的是15。
为什么呢?
- 首先推测问题出现的原因。初步确定问题可能的原因最好。
- 实际上手调试很有必要。
- 调试的时候我们要做到心里有数
我们小试牛刀调试一下,首先分析问题所在。 编译器没有报错,说明代码没有语法的问题。
输入3,按f11逐语句进行调试。
一次循环下来,sum和ret都变为1,i变为1。
第二次循环下来,仍然看不到什么问题,阶乘和其和也都正确。
在第三次循环,我们发现ret增长的速度十分的快,这才发现ret的值并没有重置为1 。
我们通过调试发现了错误,写出了正确的代码:
#include<stdio.h>
int main()
{
int i = 0;
int sum = 0;
int n = 0;
int ret = 1;
scanf("%d", &n);
for (i = 1; i <= n; i++)
{
int j = 0;
ret = 1;//将ret=1置于循环里
for (j = 1; j <= i; j++)
{
ret *= j;
}
sum += ret;
}
printf("%d\n", sum);
return 0;
}
5.2.实例2
给出一个数组越界访问的例子,出自《C陷阱与缺陷》 。
#include <stdio.h>
int main()
{
int i = 0;
int arr[10] = {0};
for(i=0; i<=12; i++)
{
arr[i] = 0;
printf("hehe\n");
}
return 0;
}
如图,程序会死循环打印hehe。
上一个代码可以不用调试看出来错误,但是这个是无法看出来的,只能调试来看。
可以看到到这一步为止都十分正常,也就是i==12之前是正常的。
然而这一步之后,i和arr[i]就一同变成了0。
知道了问题所在,我们这次通过地址来调试看看。
可以看到,当i==12时,i的地址和arr[i]的地址是相同的,也就是说,它们在栈区所开辟的空间相同。这样导致的结果就是, arr[i] = 0的操作将i也一同变成了0,导致死循环。
6. 如何写出好(易于调试)的代码。
6.1 优秀的代码
优秀的代码应该满足以下条件。
1. 代码运行正常
2. bug很少
3. 效率高
4. 可读性高
5. 可维护性高
6. 注释清晰
7. 文档齐全
为了达到这样的条件,我们可以使用以下常见的coding技巧:
1. 使用assert
2. 尽量使用const
3. 养成良好的编码风格
4. 添加必要的注释
5. 避免编码的陷阱。
6.2 示范
我们来模拟实现库函数strcpy:
函数的参数形式char* strcpy(char*destination,const char*source);
该参数说明了strcpy返回类型是char类型的指针,将源头(不能被改)拷贝到目的地。
strcpy特点和strlen类似,遇到‘\0’就停止。
比较容易想到的写法是:
#include<stdio.h>
#include<string.h>
#include<assert.h>
void my_strcpy(char* a, char* b)
{
while (*a != '\0')
{
*b = *a;
b++;
a++;
}
*b = *a;
}
int main()
{
char a[] = "abcdef";
char b[10];
my_strcpy(a, b);
printf("%s", b);
return 0;
}
虽然可以实现strcpy函数的内容,但是优化不怎么样,将简单的功能写的非常麻烦,且无法避免空指针的情况,下面为优化后的写法:
#include<stdio.h>
#include<assert.h>
void my_strcpy(const char a[],char b[])
{
assert(a!=NULL&&b!=NULL);//断言函数来避免空指针的情况
while (*b++ = *a++)
{
;//当*a为\0的时候,while里的值为假,跳出循环
}
}
int main()
{
char a[] = "abcdef";
char b[10]="";//定义第二个数组来拷贝数组
my_strcpy(a,b);
printf("%s", b);
return 0;
}
值得注意的是,assert断言函数和const的使用,可以大大增加代码的安全性。
6.3 const的作用
#include <stdio.h>
//代码1
void test1()
{
int n = 10;
int m = 20;
int *p = &n;
*p = 20;//ok?
p = &m; //ok?
}
void test2()
{
//代码2
int n = 10;
int m = 20;
const int* p = &n;
*p = 20;//ok?
p = &m; //ok?
}
void test3()
{
int n = 10;
int m = 20;
int *const p = &n;
*p = 20; //ok?
p = &m; //ok?
}
int main()
{
//测试无cosnt的
test1();
//测试const放在*的左边
test2();
//测试const放在*的右边
test3();
return 0;
}
结论:
const修饰指针变量的时候:
1. const如果放在*的左边,修饰的是指针指向的内容,保证指针指向的内容不能通过指针来改 变。但是指针变量本身的内容可变。
2. const如果放在*的右边,修饰的是指针变量本身,保证了指针变量的内容不能修改,但是指 针指向的内容,可以通过指针改变。
6.4. const的实例
#define _CRT_SECURE_NO_WARNINGS
#include <stdio.h>
int my_strlen(const char a[])//用const来使代码更加安全
{
int count = 0;
while (* a++ != '\0')
{
count++;
}
return count;
}
int main()
{
char a[]="abcdef";
int b = my_strlen(a);
printf("%d", b);
return 0;
}
7.编程常见的错误
7.1 编译型错误
直接看错误提示信息(双击),解决问题。或者凭借经验就可以搞定。相对来说简单。
如:逗号的使用,分号的添加,括号的对应,各类操作符的使用,库函数的使用格式等。
对于这种问题,我们可以直接通过错误列表的提示来定位问题所在,解决问题。
7.2 链接型错误
看错误提示信息,主要在代码中找到错误信息中的标识符,然后定位问题所在。一般是标识符名不存在或者拼写错误。
如:变量、头文件的包含,文件的引入,常量和宏的定义,库函数名的拼写,自定义函数名的一致等等。
就例如将main写错为mian这样的错误。
7.3 运行时错误
借助调试,逐步定位问题。最难搞。
如:栈溢出,逻辑漏洞,未指针的越界访,未初始化的变量,字符串溢出,数组越界,重复释放内存,使用无效的指针等等。
就像上文里的几个例子。
对于这样的问题,可以通过调试来解决。
说了这么多,调试的章节终于结束了!
希望大家都能成为20%的时间在写程序,但是80%的时间在调试的程序员!