C++【类与对象】

news2024/11/14 14:58:34

文章目录

  • 类与对象
  • (1)类与对象一
    • 1.0.面向过程和面向对象初步认识
    • 1.1.类的引入
    • 1.2.类的定义
    • 1.3.类的访问限定符及封装
    • 1.4.类的作用域
    • 1.5.类的实例化
    • 1.6.类的对象大小的计算
    • 1.8.类成员函数的this指针
  • (2)类与对象二
    • 2.0类的6个默认成员函数
    • 2.1. 构造函数
    • 2.2. 析构函数
    • 2.3. 拷贝构造函数
    • 2.4. 赋值运算符重载
    • 2.5. const成员函数
    • 2.6. 取地址及const取地址操作符重载
  • (3)类与对象三
    • 3.0.构造函数进一步理解
    • 3.1. Static成员
    • 3.2.友元
    • 3.3. 内部类
    • 3.4.匿名对象
    • 3.5.拷贝对象时的一些编译器优化

类与对象

(1)类与对象一

1.0.面向过程和面向对象初步认识

  • C语言是面向过程的,关注的是过程,分析出求解问题的步骤,通过函数调用逐步解决问题。
  • C++是基于面向对象的,关注的是对象,将一件事情拆分成不同的对象,靠对象之间的交互完成。

1.1.类的引入

C语言结构体中只能定义变量,在C++中,结构体内不仅可以定义变量,也可以定义函数。比如:之前在数据结构初阶中,用C语言方式实现的栈,结构体中只能定义变量;现在以C++方式实现,会发现struct中也可以定义函数。下面的结构体的定义,在C++中更喜欢用class来代替。
C++把结构体升级成类,里面可以有函数,类是一个整体。

typedef int DataType;
struct Stack
{
void Init(size_t capacity)
{
_array = (DataType*)malloc(sizeof(DataType) * capacity);
if (nullptr == _array)
{
perror("malloc申请空间失败");
return;
}
_capacity = capacity;
_size = 0;
}
void Push(const DataType& data)
{
// 扩容
_array[_size] = data;
++_size;
}
DataType Top()
{
    return _array[_size - 1];
}
void Destroy()
{
if (_array)
{
free(_array);
_array = nullptr;
_capacity = 0;
_size = 0;
}
}
DataType* _array;
size_t _capacity;
size_t _size;
};
int main()
{
Stack s;
s.Init(10);
s.Push(1);
s.Push(2);
s.Push(3);
cout << s.Top() << endl;
s.Destroy();
return 0;
}

成员变变量要加_,来区分成员变量和形参.

1.2.类的定义

class className
{
// 类体:由成员函数和成员变量组成
};  // 一定要注意后面的分号

class为定义类的关键字,ClassName为类的名字,{}中为类的主体,注意类定义结束时后面分号不能省略。类体中内容称为类的成员:类中的变量称为类的属性或成员变量; 类中的函数称为类的方法或者成员函数。
类的两种定义方式:

  1. 声明和定义全部放在类体中,需注意:成员函数如果在类中定义,编译器可能会将其当成内联函数处理。
  2. 类声明放在.h文件中,成员函数定义放在.cpp文件中,注意:成员函数名前需要加类名:: ,一般情况下,更期望采用第二种方式

1.3.类的访问限定符及封装

1、访问限定符
C++实现封装的方式:用类将对象的属性与方法结合在一块,让对象更加完善,通过访问权限选择性的将其接口提供给外部的用户使用。访问限定符只在编译时有用,当数据映射到内存后,没有任何访问限定符上的区别。可分为pubilc(公有),protected(保护),private(私有)
说明如下:

  1. public修饰的成员在类外可以直接被访问
  2. protected和private修饰的成员在类外不能直接被访问(此处protected和private是类似的)
  3. 访问权限作用域从该访问限定符出现的位置开始直到下一个访问限定符出现时为止
  4. 如果后面没有访问限定符,作用域就到 } 即类结束。
  5. class的默认访问权限为private,struct为public(因为struct要兼容C)

2、C++中struct和class的区别
C++需要兼容C语言,所以C++中struct可以当成结构体使用。另外C++中struct还可以用来定义类。和class定义类是一样的,区别是struct定义的类默认访问权限是public,class定义的类默认访问权限是private。在继承和模板参数列表位置,struct和class也有区别。
3、封装
面向对象的三大特性:封装、继承、多态
在类和对象阶段,主要是研究类的封装特性。
封装:将数据和操作数据的方法进行有机结合,隐藏对象的属性和实现细节,仅对外公开接口来和对象进行交互。封装本质上是一种管理,让用户更方便使用类。比如:对于电脑这样一个复杂的设备,提供给用户的就只有开关机键、通过键盘输入,显示器,USB插孔等,让用户和计算机进行交互,完成日常事务。但实际上电脑真正工作的却是CPU、显卡、内存等一些硬件元件。
现实生活中的实体计算机并不认识,计算机只认识二进制格式的数据。如果想要让计算机认识现实生活中的实体,用户必须通过某种面向对象的语言,对实体进行描述,然后通过编写程序,创建对象后计算机才可以认识。比如想要让计算机认识洗衣机,就需要:

  1. 用户先要对现实中洗衣机实体进行抽象—即在人为思想层面对洗衣机进行认识,洗衣机有什么属性,有那些功能,即对洗衣机进行抽象认知的一个过程
  2. 在人的头脑中已经对洗衣机有了一个清醒的认识,只不过此时计算机还不清 楚,想要让计算机识别人想象中的洗衣机,就需要人通过某种面向对象的语言(比如:C++、Java、Python等)将洗衣机用类来进行描述,并输入到计算机中
  3. 经在计算机中就有了一个洗衣机类,但是洗衣机类只是站在计算机的角度对洗衣机对象进行描述的,通过洗衣机类,可以实例化出一个个具体的洗衣机对象,此时计算机才能知道洗衣机是什么东西。
  4. 用户就可以借助计算机中洗衣机对象,来模拟现实中的洗衣机实体了。

在类和对象阶段,类是对某一类实体(对象)来进行描述的,描述该对象具有那些属性,那些方法,描述完成后就形成了一种新的自定义类型,才用该自定义类型就可以实例化具体的对象。
对于计算机使用者而言,不用关心内部核心部件,比如主板上线路是如何布局的,CPU内部是如何设计的等,用户只需要知道,怎么开机、怎么通过键盘和鼠标与计算机进行交互。因此计算机厂商在出厂时,在外部套上壳子,将内部实现细节隐藏起来,仅仅对外提供开关机、鼠标以及键盘插孔等,让用户可以与计算机进行交互。
在C++语言中实现封装,可以通过类将数据以及操作数据的方法进行有机结合,通过访问权限来隐藏对象内部实现细节,控制哪些方法可以在类外部直接被使用

1.4.类的作用域

类定义了一个新的作用域,类的所有成员都在类的作用域中。在类体外定义成员时,需要使用 ::作用域操作符指明成员属于哪个类域。

class Person
{
public:
void PrintPersonInfo();
private:
char _name[20];
char _gender[3];
int  _age;
};
// 这里需要指定PrintPersonInfo是属于Person这个类域
void Person::PrintPersonInfo()
{
cout << _name << " "<< _gender << " " << _age << endl;
}

1.5.类的实例化

用类类型创建对象的过程,称为类的实例化

  1. 类是对对象进行描述的,是一个模型一样的东西,限定了类有哪些成员,定义出一个类并没有分配实际的内存空间来存储它;比如:入学时填写的学生信息表,表格就可以看成是一个类,来描述具体学生信息。类就像建造房子的图纸一样,根据图纸建造好的房子就是图纸的一个实例。

  2. 一个类可以实例化出多个对象,实例化出的对象占用实际的物理空间,存储类成员变量Person类是没有空间的,只有Person类实例化出的对象才有具体的年龄。

int main()
{
Person._age = 100;  // 编译失败:error C2059: 语法错误:“.”
return 0;
}
  1. 比如,类实例化出对象就像现实中使用建筑设计图建造出房子,类就像是设计图,只设计出需要什么东西,但是并没有实体的建筑存在,同样类也只是一个设计,实例化出的对象才能实际存储数据,占用物理空间。

在private里面只能说是声明,没有开空间,比如Date d1,这是对对象实例化就是开空间,针对成员变量

1.6.类的对象大小的计算

一个类的大小,实际就是该类中”成员变量”之和,当然要注意内存对齐注意空类的大小,空类比较特殊,编译器给了空类一个字节来唯一标识这个类的对象。
成员函数是定义,不存在对象里面。成员函数是放在公共区域,代码段(有的是指令即地址),成员变量时独立存储的。
没有成员变量都是1个字节,大小是1不存有效数据。

结构对齐规则:

  1. 第一个成员在与结构体偏移量为0的地址处。
  2. 其他成员变量要对齐到某个数字(对齐数)的整数倍的地址处。 注意:对齐数 = 编译器默认的一个对齐数 与 该成员大小的较小值。 VS中默认的对齐数为8
  3. 结构体总大小为:最大对齐数(所有变量类型最大者与默认对齐参数取最小)的整数倍。
  4. 如果嵌套了结构体的情况,嵌套的结构体对齐到自己的最大对齐数的整数倍处,结构体的整 体大小就是所有最大对齐数(含嵌套结构体的对齐数)的整数倍

1.8.类成员函数的this指针

1、this指针的引出

class Date
{
public:
void Init(int year, int month, int day)
{
_year = year;
_month = month;
_day = day;
}
void Print()
{
cout <<_year<< "-" <<_month << "-"<< _day <<endl;
}
private:
int _year;   // 年
int _month;   // 月
int _day;    // 日
};
int main()
{
Date d1, d2;
d1.Init(2022,1,11);
d2.Init(2022, 1, 12);
d1.Print();
d2.Print();
return 0;
}

对于上述类,有这样的一个问题:
Date类中有 Init 与 Print 两个成员函数,函数体中没有关于不同对象的区分,那当d1调用 Init 函数时,该函数是如何知道应该设置d1对象,而不是设置d2对象呢?
C++中通过引入this指针解决该问题,即:C++编译器给每个“非静态的成员函数“增加了一个隐藏的指针参数,让该指针指向当前对象(函数运行时调用该函数的对象),在函数体中所有“成员变量”的操作,都是通过该指针去访问。只不过所有的操作对用户是透明的,即用户不需要来传递,编译器自动完成。
2、this指针的特性:

  • this指针的类型:类类型* const,即成员函数中,不能给this指针赋值。
  • 只能在“成员函数”的内部使用
  • this指针本质上是“成员函数”的形参,当对象调用成员函数时,将对象地址作为实参传递给this形参。所以对象中不存储this指针。
  • this指针是“成员函数”第一个隐含的指针形参,一般情况由编译器通过ecx寄存器自动传递不需要用户传递

空指针:Date* ptr=nullptr,ptr->func()(假设函数里面没有解引用),正常运行,ptr调用的时候不崩溃,因为成员函数不在对象里,没有发生解引用,而且ptr空指针传给了this,func里面也没有解引用。(*ptr).func()也是正常运行,本质上是调用这个func,它不在对象里面,真正的意义是传给this。
ptr->init(2022,2,2)(假设函数里面发生解引用)会发生运行崩溃,调用的时候不崩溃,因为成员函数不在对象里,但是里面解引用了所以会崩溃。

3、C语言和C++实现Stack的对比
C实现:

typedef int DataType;
typedef struct Stack
{
DataType* array;
int capacity;
int size;
}Stack;
void StackInit(Stack* ps)
{
assert(ps);
ps->array = (DataType*)malloc(sizeof(DataType) * 3);
if (NULL == ps->array)
{
assert(0);
return;
}
ps->capacity = 3;
ps->size = 0;
}
void StackDestroy(Stack* ps)
{
assert(ps);
if (ps->array)
{
free(ps->array);
ps->array = NULL;
ps->capacity = 0;
ps->size = 0;
}
}
void CheckCapacity(Stack* ps)
{
if (ps->size == ps->capacity)
{
int newcapacity = ps->capacity * 2;
DataType* temp = (DataType*)realloc(ps->array,
newcapacity*sizeof(DataType));
if (temp == NULL)
{
perror("realloc申请空间失败!!!");
return;
}
ps->array = temp;
ps->capacity = newcapacity;
}
}
void StackPush(Stack* ps, DataType data)
{
assert(ps);
CheckCapacity(ps);
ps->array[ps->size] = data;
ps->size++;
}
int StackEmpty(Stack* ps)
{
assert(ps);
return 0 == ps->size;
}
void StackPop(Stack* ps)
{
if (StackEmpty(ps))
return;
ps->size--;
}
DataType StackTop(Stack* ps)
{
assert(!StackEmpty(ps));
return ps->array[ps->size - 1];
}
int StackSize(Stack* ps)
{
assert(ps);
return ps->size;
}
int main()
{
Stack s;
StackInit(&s);
StackPush(&s, 1);
StackPush(&s, 2);
StackPush(&s, 3);
StackPush(&s, 4);
printf("%d\n", StackTop(&s));
printf("%d\n", StackSize(&s));
StackPop(&s);
StackPop(&s);
printf("%d\n", StackTop(&s));
printf("%d\n", StackSize(&s));
StackDestroy(&s);
return 0;
}

C++实现:

typedef int DataType;
class Stack
{
public:
void Init()
{
_array = (DataType*)malloc(sizeof(DataType) * 3);
if (NULL == _array)
{
perror("malloc申请空间失败!!!");
return;
}
_capacity = 3;
_size = 0;
}
void Push(DataType data)
{
CheckCapacity();
_array[_size] = data;
_size++;
}
void Pop()
{
if (Empty())
return;
_size--;
}
DataType Top(){ return _array[_size - 1];}
int Empty() { return 0 == _size;}
int Size(){ return _size;}
void Destroy()
{
if (_array)
{
free(_array);
_array = NULL;
_capacity = 0;
_size = 0;
}
}
private:
void CheckCapacity()
{
if (_size == _capacity)
{
int newcapacity = _capacity * 2;
DataType* temp = (DataType*)realloc(_array, newcapacity *
sizeof(DataType));
if (temp == NULL)
{
perror("realloc申请空间失败!!!");
return;
}
_array = temp;
_capacity = newcapacity;
}
}
private:
DataType* _array;
int _capacity;
int _size;
};
int main()
{
Stack s;
s.Init();
s.Push(1);
s.Push(2);
s.Push(3);
s.Push(4);
printf("%d\n", s.Top());
printf("%d\n", s.Size());
s.Pop();
s.Pop();
printf("%d\n", s.Top());
printf("%d\n", s.Size());
s.Destroy();
return 0;
}

通过以上对比在用C语言实现时,Stack相关操作函数有以下共性:

每个函数的第一个参数都是Stack*
函数中必须要对第一个参数检测,因为该参数可能会为NULL
函数中都是通过Stack*参数操作栈的
调用时必须传递Stack结构体变量的地址

结构体中只能定义存放数据的结构,操作数据的方法不能放在结构体中,即数据和操作数据的方式是分离开的,而且实现上相当复杂一点,涉及到大量指针操作,稍不注意可能就会出错。
而C++中通过类可以将数据 以及 操作数据的方法进行完美结合,通过访问权限可以控制那些方法在类外可以被调用,即封装,在使用时就像使用自己的成员一样,更符合人类对一件事物的认知。而且每个方法不需要传递Stack*的参数了,编译器编译之后该参数会自动还原,即C++中 Stack *参数是编译器维护的,C语言中需用用户自己维护。

(2)类与对象二

2.0类的6个默认成员函数

如果一个类中什么成员都没有,简称为空类。
空类并不是什么都没有,任何类在什么都不写时,编译器会自动生成以下6个默认成员函数。
默认成员函数:用户没有显式实现,编译器会生成的成员函数称为默认成员函数。
在这里插入图片描述

class Date {};

2.1. 构造函数

1、概念:
对以下Date类

class Date
{
public:
void Init(int year, int month, int day)
{
_year = year;
_month = month;
_day = day;
}
void Print()
{
cout << _year << "-" << _month << "-" << _day << endl;
}
private:
int _year;
int _month;
int _day;
};
int main()
{
Date d1;
d1.Init(2022, 7, 5);
d1.Print();
Date d2;
d2.Init(2022, 7, 6);
d2.Print();
return 0;
}

对于Date类,可以通过 Init 公有方法给对象设置日期,但如果每次创建对象时都调用该方法设置信息,未免有点麻烦,那能否在对象创建时,就将信息设置进去呢?
构造函数是一个特殊的成员函数,名字与类名相同,创建类类型对象时由编译器自动调用,以保证每个数据成员都有 一个合适的初始值,并且在对象整个生命周期内只调用一次。
2、特性
构造函数是特殊的成员函数,需要注意的是,构造函数虽然名称叫构造,但是构造函数的主要任务并不是开空间创建对象,而是初始化对象。
其特征如下:

  1. 函数名与类名相同。
  2. 无返回值。
  3. 对象实例化时编译器自动调用对应的构造函数。
  4. 构造函数可以重载。
class Date
{
 public:
   // 1.无参构造函数
   Date()
  {}
   // 2.带参构造函数
   Date(int year, int month, int day)
  {
     _year = year;
     _month = month;
     _day = day;
  }
 private:
   int _year;
   int _month;
   int _day;
};
 void TestDate()
{
   Date d1; // 调用无参构造函数
   Date d2(2015, 1, 1); // 调用带参的构造函数
   // 注意:如果通过无参构造函数创建对象时,对象后面不用跟括号,否则就成了函数声明
   // 以下代码的函数:声明了d3函数,该函数无参,返回一个日期类型的对象
   // warning C4930: “Date d3(void)”: 未调用原型函数(是否是有意用变量定义的?)
   Date d3();
}
  1. 如果类中没有显式定义构造函数,则C++编译器会自动生成一个无参的默认构造函数,一旦用户显式定义编译器将不再生成。
class Date
{
 public:
/*
// 如果用户显式定义了构造函数,编译器将不再生成
Date(int year, int month, int day)
{
_year = year;
_month = month;
_day = day;
}
*/
void Print()
{
cout << _year << "-" << _month << "-" << _day << endl;
}
 private:
int _year;
int _month;
int _day;
};
 int main()
{
// 将Date类中构造函数屏蔽后,代码可以通过编译,因为编译器生成了一个无参的默认构造函// 将Date类中构造函数放开,代码编译失败,因为一旦显式定义任何构造函数,编译器将不再
生成
   // 无参构造函数,放开后报错:error C2512: “Date”: 没有合适的默认构造函数可用
Date d1;
return 0;
}
  1. 关于编译器生成的默认成员函数,会有疑惑:不实现构造函数的情况下,编译器会生成默认的构造函数。但是看起来默认构造函数又没什么用?d对象调用了编译器生成的默认构造函数,但是d对象_year/_month/_day,依旧是随机值。也就说在这里编译器生成的
    默认构造函数并没有什么用??
    C++把类型分成内置类型(基本类型)和自定义类型。内置类型就是语言提供的数据类型,如:int/char…,自定义类型就是我们使用class/struct/union等自己定义的类型,看看下面的程序,就会发现编译器生成默认的构造函数会对自定类型成员_t调用的它的默认成员函数。
class Time
{
public:
Time()
{
cout << "Time()" << endl;
_hour = 0;
_minute = 0;
_second = 0;
}
private:
int _hour;
int _minute;
int _second;
};
class Date
{
private:
// 基本类型(内置类型)
int _year;
int _month;
int _day;
// 自定义类型
Time _t;
};
int main()
{
Date d;
return 0;
}

注意:C++11 中针对内置类型成员不初始化的缺陷,又打了补丁,即:内置类型成员变量在类中声明时可以给默认值。

class Time
{
public:
Time()
{
cout << "Time()" << endl;
_hour = 0;
_minute = 0;
_second = 0;
}
private:
int _hour;
int _minute;
int _second;
};
class Date
{
private:
// 基本类型(内置类型)
int _year = 1970;
int _month = 1;
int _day = 1;
// 自定义类型
Time _t;
};
int main()
{
Date d;
return 0;
}
  1. 无参的构造函数和全缺省的构造函数都称为默认构造函数,并且默认构造函数只能有一个。
    注意:无参构造函数、全缺省构造函数、我们没写编译器默认生成的构造函数,都可以认为是默认构造函数。
class Date
{
public:
Date()
{
_year = 1900;
_month = 1;
_day = 1;
}
Date(int year = 1900, int month = 1, int day = 1)
{
_year = year;
_month = month;
_day = day;
}
private:
int _year;
int _month;
int _day;
};

void Test()
{
Date d1;
}

以上程序经测试会报错,对函数重载调用不明确,无参和全缺省不能同时存在。

2.2. 析构函数

1、概念
知道了一个对象是怎么来的,那一个对象又是怎么没的?
析构函数:与构造函数功能相反,析构函数不是完成对对象本身的销毁,局部对象销毁工作是由编译器完成的。而对象在销毁时会自动调用析构函数,完成对象中资源的清理工作。
2、特性
析构函数是特殊的成员函数,其特征如下:

  1. 析构函数名是在类名前加上字符 ~。
  2. 无参数无返回值类型。
  3. 一个类只能有一个析构函数。若未显式定义,系统会自动生成默认的析构函数。注意:析构函数不能重载
  4. 对象生命周期结束时,C++编译系统系统自动调用析构函数。
typedef int DataType;
class Stack
{
public:
Stack(size_t capacity = 3)
{
_array = (DataType*)malloc(sizeof(DataType) * capacity);
if (NULL == _array)
{
perror("malloc申请空间失败!!!");
return;
}
_capacity = capacity;
_size = 0;
}
void Push(DataType data)
{
// CheckCapacity();
_array[_size] = data;
_size++;
}
// 其他方法...
~Stack()
{
if (_array)
{
free(_array);
_array = NULL;
_capacity = 0;
_size = 0;
}
}
private:
DataType* _array;
int _capacity;
int _size;
};
void TestStack()
{
Stack s;
s.Push(1);
s.Push(2);
}
  1. 关于编译器自动生成的析构函数,是否会完成一些事情呢?下面的程序我们会看到,编译器生成的默认析构函数,对自定类型成员调用它的析构函数。
class Time
{
public:
~Time()
{
cout << "~Time()" << endl;
}
private:
int _hour;
int _minute;
int _second;
};
class Date
{
private:
// 基本类型(内置类型)
int _year = 1970;
int _month = 1;
int _day = 1;
// 自定义类型
Time _t;
};
int main()
{
Date d;
return 0;
}

程序运行结束后输出:~Time()
在main方法中根本没有直接创建Time类的对象,为什么最后会调用Time类的析构函数?
因为:main方法中创建了Date对象d,而d中包含4个成员变量,其中_year, _month,_day三个是内置类型成员,销毁时不需要资源清理,最后系统直接将其内存回收即可;而_t是Time类对象,所以在d销毁时,要将其内部包含的Time类的_t对象销毁,所以要调用Time类的析构函数。但是:main函数 中不能直接调用Time类的析构函数,实际要释放的是Date类对象,所以编译器会调用Date类的析构函数,而Date没有显式提供,则编译器会给Date类生成一个默认的析构函数,目的是在其内部调用Time类的析构函数,即当Date对象销毁时,要保证其内部每个自定义对象都可以正确销毁main函数中并没有直接调用Time类析构函数,而是显式调用编译器为Date类生成的默认析构函数
注意:创建哪个类的对象则调用该类的析构函数,销毁那个类的对象则调用该类的析构函数。
6. 如果类中没有申请资源时,析构函数可以不写,直接使用编译器生成的默认析构函数,比如Date类;有资源申请时,一定要写,否则会造成资源泄漏,比如Stack类。

2.3. 拷贝构造函数

1、概念:
拷贝构造函数:只有单个形参,该形参是对本类类型对象的引用(一般常用const修饰),在用已存在的类类型对象创建新对象时由编译器自动调用。
2、特征:
拷贝构造函数也是特殊的成员函数,其特征如下:

  1. 拷贝构造函数是构造函数的一个重载形式。
  2. 拷贝构造函数的参数只有一个且必须是类类型对象的引用,使用传值方式编译器直接报错,因为会引发无穷递归调用。
class Date
{
public:
Date(int year = 1900, int month = 1, int day = 1)
{
_year = year;
_month = month;
_day = day;
}
  Date(const Date& d)  
{
_year = d._year;
_month = d._month;
_day = d._day;
}
private:
int _year;
int _month;
int _day;
};
int main()
{
Date d1;
Date d2(d1);
return 0;
}
  1. 若未显式定义,编译器会生成默认的拷贝构造函数。 默认的拷贝构造函数对象按内存存储按字节序完成拷贝,这种拷贝叫做浅拷贝,或者值拷贝。
class Time
{
public:
Time()
{
_hour = 1;
_minute = 1;
_second = 1;
}
Time(const Time& t)
{
_hour = t._hour;
_minute = t._minute;
_second = t._second;
cout << "Time::Time(const Time&)" << endl;
}
private:
int _hour;
int _minute;
int _second;
};
class Date
{
private:
// 基本类型(内置类型)
int _year = 1970;
int _month = 1;
int _day = 1;
// 自定义类型
Time _t;
};
int main()
{
Date d1;
 
  // 用已经存在的d1拷贝构造d2,此处会调用Date类的拷贝构造函数
  // 但Date类并没有显式定义拷贝构造函数,则编译器会给Date类生成一个默认的拷贝构造函数
Date d2(d1);
return 0;
}

注意:在编译器生成的默认拷贝构造函数中,内置类型是按照字节方式直接拷贝的,而自定义类型是调用其拷贝构造函数完成拷贝的。
4. 编译器生成的默认拷贝构造函数已经可以完成字节序的值拷贝了,还需要自己显式实现吗?当然像日期类这样的类是没必要的。

// 这里会发现下面的程序会崩溃掉?这里就需要我们以后讲的深拷贝去解决。
typedef int DataType;
class Stack
{
public:
Stack(size_t capacity = 10)
{
_array = (DataType*)malloc(capacity * sizeof(DataType));
if (nullptr == _array)
{
perror("malloc申请空间失败");
return;
}
_size = 0;
_capacity = capacity;
}
void Push(const DataType& data)
{
// CheckCapacity();
_array[_size] = data;
_size++;
}
~Stack()
{
if (_array)
{
free(_array);
_array = nullptr;
_capacity = 0;
_size = 0;
}
}
private:
DataType *_array;
size_t _size;
size_t _capacity;
};
int main()
{
Stack s1;
s1.Push(1);
s1.Push(2);
s1.Push(3);
s1.Push(4);
Stack s2(s1);
return 0;
}

注意:类中如果没有涉及资源申请时,拷贝构造函数是否写都可以;一旦涉及到资源申请时,则拷贝构造函数是一定要写的,否则就是浅拷贝。
5. 拷贝构造函数典型调用场景:

使用已存在对象创建新对象
函数参数类型为类类型对象
函数返回值类型为类类型对象

class Date
{
public:
Date(int year, int minute, int day)
{
cout << "Date(int,int,int):" << this << endl;
}
Date(const Date& d)
{
cout << "Date(const Date& d):" << this << endl;
}
~Date()
{
cout << "~Date():" << this << endl;
}
private:
int _year;
int _month;
int _day;
};
Date Test(Date d)
{
Date temp(d);
return temp;
}
int main()
{
Date d1(2022,1,13);
Test(d1);
return 0;
}

为了提高程序效率,一般对象传参时,尽量使用引用类型,返回时根据实际场景,能用引用尽量使用引用。

什么时候用拷贝构造:
实现析构函数释放空间去、即资源管理,需要拷贝构造,涉及到到空间使用且深拷贝的时候。

如下函数:
一、对于Stack st2(st1),调用拷贝构造时,涉及到指向同一块空间的问题,存在俩方面影响。
1、插入删除数据会互相影响。
2、析构两次,会造成程序崩溃。
所以就不能用默认的拷贝构造,需要用深拷贝给别人开一块和它一样大的空间。 如Stack(const Stack& st)。

二、对于类MyQueue ,我们就不用写构造,析构,拷贝构造,里面有两个自定义类型和一个内置类型,它会生成默认的构造、析构、拷贝构造。
默认生成的拷贝构造和赋值重载:
1、内置类型会完成浅拷贝,值拷写
2、自定义类型去调用这个成员的拷贝构造

typedef int DataType;
class Stack
{
public:
	Stack(size_t capacity = 10)
	{
	cout << "Stack(size_t capacity = 10)" << endl;

	_array = (DataType*)malloc(capacity * sizeof(DataType));
		if (nullptr == _array)
		{
			perror("malloc申请空间失败");
			exit(-1);
		}

		_size = 0;
		_capacity = capacity;
	}
	void Push(const DataType& data)
	{
		// CheckCapacity();
		_array[_size] = data;
		_size++;
	}

	Stack(const Stack& st)
	{
		cout << "Stack(const Stack& st)" << endl;
		_array = (DataType*)malloc(sizeof(DataType)*st._capacity);
		if (nullptr == _array)
		{
			perror("malloc申请空间失败");
			exit(-1);
		}

		memcpy(_array, st._array, sizeof(DataType)*st._size);
		_size = st._size;
		_capacity = st._capacity;
	}
	~Stack()
	{
		cout << "~Stack()" << endl;
	if (_array)
		{
		free(_array);
			_array = nullptr;
		_capacity = 0;
			_size = 0;
		}
	}
private:
	DataType *_array;
	size_t    _size;
	size_t    _capacity;
};

class MyQueue
{
public:
	// 默认生成构造
	// 默认生成析构
	// 默认生成拷贝构造

private:
	Stack _pushST;
	Stack _popST;
	int _size = 0;
}
int main()
{
	Date d1(2023, 2, 5);
	d1.Print();
	Date d2(d1);
	Date d3 = d1; //  拷贝构造
	d2.Print();
	Stack st1;
	st1.Push(1);
	st1.Push(2);
	st1.Push(4);
	Stack st2(st1);
    MyQueue q1;
	MyQueue q2(q1);
	return 0;
}

2.4. 赋值运算符重载

1、运算符重载
C++为了增强代码的可读性引入了运算符重载,运算符重载是具有特殊函数名的函数,也具有其返回值类型,函数名字以及参数列表,其返回值类型与参数列表与普通的函数类似。实际上就是让自定义类型对象使用运算符。 参数和操作数是对应的,作为类成员函数形参比操作数目少1。

函数名字为:关键字operator后面接需要重载的运算符符号。
函数原型:返回值类型 operator操作符(参数列表)
注意:

  • 不能通过连接其他符号来创建新的操作符:比如operator@
  • 重载操作符必须有一个类类型参数
  • 用于内置类型的运算符,其含义不能改变,例如:内置的整型+,不 能改变其含义
    作为类成员函数重载时,其形参看起来比操作数数目少1,因为成员函数的第一个参数为隐
    藏的this
  • .* :: sizeof ?: . 注意以上5个运算符不能重载。这个经常在笔试选择题中出
    现。
// 全局的operator==
class Date
{
public:
Date(int year = 1900, int month = 1, int day = 1)
 {
    _year = year;
    _month = month;
    _day = day;
 }  
//private:
int _year;
int _month;
int _day;
};
// 这里会发现运算符重载成全局的就需要成员变量是公有的,那么问题来了,封装性如何保证?
// 这里其实可以用我们后面学习的友元解决,或者干脆重载成成员函数。
bool operator==(const Date& d1, const Date& d2)
{
  return d1._year == d2._year
 && d1._month == d2._month
    && d1._day == d2._day;
}
void Test ()
{
  Date d1(2018, 9, 26);
  Date d2(2018, 9, 27);
  cout<<(d1 == d2)<<endl;
}
class Date
{
public:
Date(int year = 1900, int month = 1, int day = 1)
{
    _year = year;
    _month = month;
    _day = day;
 }
 
  // bool operator==(Date* this, const Date& d2)
  // 这里需要注意的是,左操作数是this,指向调用函数的对象
  bool operator==(const Date& d2)
{
    return _year == d2._year;
      && _month == d2._month
      && _day == d2._day;
}
private:
int _year;
int _month;
int _day;
};

2、赋值运算符重载

  1. 赋值运算符重载格式:

参数类型:const T&,传递引用可以提高传参效率
返回值类型:T&,返回引用可以提高返回的效率,有返回值目的是为了支持连续赋值
检测是否自己给自己赋值
返回*this :要复合连续赋值的含义

用不用引用,看出了作用域还在不在,不在不能用,在能用。

class Date
{
public :
Date(int year = 1900, int month = 1, int day = 1)
 {
    _year = year;
    _month = month;
    _day = day;
 }
Date (const Date& d)
 {
    _year = d._year;
    _month = d._month;
    _day = d._day;
 }
Date& operator=(const Date& d)
{
if(this != &d)
   {
      _year = d._year;
      _month = d._month;
      _day = d._day;
   }
   
    return *this;
}
private:
int _year ;
int _month ;
int _day ;
};

2.赋值运算符只能重载成类的成员函数不能重载成全局函数

class Date
{
public:
Date(int year = 1900, int month = 1, int day = 1)
{
_year = year;
_month = month;
_day = day;
}
int _year;
int _month;
int _day;
};
// 赋值运算符重载成全局函数,注意重载成全局函数时没有this指针了,需要给两个参数
Date& operator=(Date& left, const Date& right)
{
if (&left != &right)
{
left._year = right._year;
left._month = right._month;
left._day = right._day;
}
return left;
}
// 编译失败:
// error C2801: “operator =”必须是非静态成员

原因:赋值运算符如果不显式实现,编译器会生成一个默认的。此时用户再在类外自己实现一个全局的赋值运算符重载,就和编译器在类中生成的默认赋值运算符重载冲突了,故赋值运算符重载只能是类的成员函数。

3.用户没有显式实现时,编译器会生成一个默认赋值运算符重载,以值的方式逐字节拷贝。注意:内置类型成员变量是直接赋值的,而自定义类型成员变量需要调用对应类的赋值运算符重载完成赋值。

class Time
{
public:
Time()
{
_hour = 1;
_minute = 1;
_second = 1;
}
Time& operator=(const Time& t)
{
if (this != &t)
{
_hour = t._hour;
_minute = t._minute;
_second = t._second;
}
return *this;
}
private:
int _hour;
int _minute;
int _second;
};
class Date
{
private:
// 基本类型(内置类型)
int _year = 1970;
int _month = 1;
int _day = 1;
// 自定义类型
Time _t;
};
int main()
{
Date d1;
Date d2;
d1 = d2;
return 0;
}

注意:如果类中未涉及到资源管理,赋值运算符是否实现都可以;一旦涉及到资源管理则必须要实现。和拷贝构造具有相似的地方。可看拷贝构造。
3、前置++和后置++重载

class Date
{
public:
Date(int year = 1900, int month = 1, int day = 1)
{
     _year = year;
     _month = month;
     _day = day;
}
Date& operator++()
{
     _day += 1;
     return *this;
}
Date operator++(int)
{
     Date temp(*this);
     _day += 1;
     return temp;
}
private:
   int _year;
   int _month;
   int _day;
};
int main()
{
     Date d;
     Date d1(2022, 1, 13);
     d = d1++;   // d: 2022,1,13  d1:2022,1,14
     d = ++d1;   // d: 2022,1,15  d1:2022,1,15
return 0;
}

前置++:返回+1之后的结果,this指向的对象函数结束后不会销毁,故以引用方式返回提高效率。
后置++:是先使用后+1,因此需要返回+1之前的旧值,故需在实现时需要先将this保存一份,然后给this+1,而temp是临时对象,因此只能以值的方式返回,不能返回引用。
C++规定:后置++重载时多增加一个int类型的参数,但调用函数时该参数不用传递,编译器自动传递,实际上是为了区分前置++。

2.5. const成员函数

将const修饰的“成员函数”称之为const成员函数,const修饰类成员函数,实际修饰该成员函数隐含的this指针,表明在该成员函数中不能对类的任何成员进行修改。
格式:类型 函数名()const

2.6. 取地址及const取地址操作符重载

这两个默认成员函数一般不用重新定义 ,编译器默认会生成。

class Date
{
public :
Date* operator&()
{
return this ;
}
const Date* operator&()const
{
return this ;
}
private :
int _year ; // 年
int _month ; // 月
int _day ; // 日
};

这两个运算符一般不需要重载,使用编译器生成的默认取地址的重载即可,只有特殊情况,才需要重载,比如想让别人获取到指定的内容!

(3)类与对象三

3.0.构造函数进一步理解

1、构造函数体赋值
在创建对象时,编译器通过调用构造函数,给对象中各个成员变量一个合适的初始值。

class Date
{
public:
Date(int year, int month, int day)
{
  _year = year;
  _month = month;
  _day = day;
}
private:
int _year;
int _month;
int _day;
};

虽然上述构造函数调用之后,对象中已经有了一个初始值,但是不能将其称为对对象中成员变量的初始化,构造函数体中的语句只能将其称为赋初值,而不能称作初始化。因为初始化只能初始化一次,而构造函数体内可以多次赋值。
2、初始化列表:
例如A a是对一个对象整体的定义,但是必须给每个成员变量找一个定义的位置。

初始化列表:以一个冒号开始,接着是一个以逗号分隔的数据成员列表,每个"成员变量"后面跟一个放在括号中的初始值或表达式。

class Date
{
public:
   Date(int year, int month, int day)
   : _year(year)
    , _month(month)
    , _day(day)
{}
private:
    int _year;
    int _month;
    int _day;
};

注意事项:

  1. 每个成员变量在初始化列表中只能出现一次(初始化只能初始化一次)
  2. 类中包含以下成员,必须放在初始化列表位置进行初始化:

引用&成员变量
const成员变量
自定义类型成员(且该类没有默认构造函数时)

class A
{
public:
    A(int a)
    :_a(a)
    {}
private:
    int _a;
};
class B
{
public:
    B(int a, int ref)
   :_aobj(a)
   ,_ref(ref)
   ,_n(10)
  {}
private:
   A _aobj;  // 没有默认构造函数
   int& _ref;  // 引用
   const int _n; // const
};

3.尽量使用初始化列表初始化,因为不管你是否使用初始化列表,对于自定义类型成员变量,一定会先使用初始化列表初始化。

class Time
{
public:
    Time(int hour = 0)
    :_hour(hour)
    {
       cout << "Time()" << endl;
    }
private:
     int _hour;
};
class Date
{
public:
     Date(int day)
    {}
private:
    int _day;
    Time _t;
};
int main()
{
  Date d(1);
}
  1. 成员变量在类中声明次序就是其在初始化列表中的初始化顺序,与其在初始化列表中的先后次序无关
class A
{
public:
  A(int a)
   :_a1(a)
   ,_a2(_a1)
 {}
 
  void Print() {
    cout<<_a1<<" "<<_a2<<endl;
 }
private:
  int _a2;
  int _a1;
};
int main() {
  A aa(1);
  aa.Print();
}
A. 输出1  1
B.程序崩溃
C.编译不通过
D.输出1  随机值
选择D

3、explicit关键字
构造函数不仅可以构造与初始化对象,对于单个参数或者除第一个参数无默认值其余均有默认值的构造函数,还具有类型转换的作用。

class Date
{
public:
// 1. 单参构造函数,没有使用explicit修饰,具有类型转换作用
// explicit修饰构造函数,禁止类型转换---explicit去掉之后,代码可以通过编译
explicit Date(int year)
:_year(year)
{}
/*
// 2. 虽然有多个参数,但是创建对象时后两个参数可以不传递,没有使用explicit修饰,具有类型转换作用
// explicit修饰构造函数,禁止类型转换
explicit Date(int year, int month = 1, int day = 1)
: _year(year)
, _month(month)
, _day(day)
{}
*/
Date& operator=(const Date& d)
{
if (this != &d)
{
_year = d._year;
_month = d._month;
_day = d._day;
}
return *this;
}
private:
int _year;
int _month;
int _day;
};
void Test()
{
Date d1(2022);
// 用一个整形变量给日期类型对象赋值
// 实际编译器背后会用2023构造一个无名对象,最后用无名对象给d1对象进行赋值
d1 = 2023;
// 将1屏蔽掉,2放开时则编译失败,因为explicit修饰构造函数,禁止了单参构造函数类型转
换的作用
}

上述代码可读性不是很好,用explicit修饰构造函数,将会禁止构造函数的隐式转换。

3.1. Static成员

1、概念:
声明为static的类成员称为类的静态成员,用static修饰的成员变量,称之为静态成员变量;用static修饰的成员函数,称之为静态成员函数。静态成员变量一定要在类外进行初始化:实现一个类,计算程序中创建出了多少个类对象。
静态成员函数没有this指针,可以直接调用,非静态都属于对象,用this去调用。静态不能访问非静态成员

class A
{
public:
	A()
	{
		++_count;
		cout << "1" << endl;
	}
	A(const A& t)
	{
		++_count;
		cout << "2" << endl;
	}
	~A()
	{
		--_count;
		cout << "3" << endl;
	}
	static int GetACount()
	{
	    return _count;
	}
	
private:
	static int _count;
};
int A::_scount = 0;
void TestA()
{

	A a1,a2;
	A a3(a1);
	cout << A::GetACount() << endl;
}
int main()
{
	TestA();
	return 0;
}

2、特性:

  1. 静态成员为所有类对象所共享,不属于某个具体的对象,存放在静态区
  2. 静态成员变量必须在类外定义,定义时不添加static关键字,类中只是声明
  3. 类静态成员即可用 类名::静态成员 或者 对象.静态成员 来访问
  4. 静态成员函数没有隐藏的this指针,不能访问任何非静态成员
  5. 静态成员也是类的成员,受public、protected、private 访问限定符的限制

3.2.友元

友元提供了一种突破封装的方式,有时提供了便利。但是友元会增加耦合度,破坏了封装,所以友元不宜多用。友元分为:友元函数和友元类问题:现在尝试去重载operator<<,然后发现没办法将operator<<重载成成员函数。因为cout的输出流对象和隐含的this指针在抢占第一个参数的位置。this指针默认是第一个参数也就是左操作数了。但是实际使用中cout需要是第一个形参对象,才能正常使用。所以要将operator<<重载成全局函数。但又会导致类外没办法访问成员,此时就需要友元来解决。operator>>同理。

class Date
{
public:
Date(int year, int month, int day)
  : _year(year)
  , _month(month)
  , _day(day)
{}
// d1 << cout; -> d1.operator<<(&d1, cout); 不符合常规调用
// 因为成员函数第一个参数一定是隐藏的this,所以d1必须放在<<的左侧
ostream& operator<<(ostream& _cout)
{
  _cout << _year << "-" << _month << "-" << _day << endl;
  return _cout;
}
private:
int _year;
int _month;
int _day;
};

友元函数可以直接访问类的私有成员,它是定义在类外部的普通函数,不属于任何类,但需要在类的内部声明,声明时需要加friend关键字。

class Date
{
friend ostream& operator<<(ostream& _cout, const Date& d);
friend istream& operator>>(istream& _cin, Date& d);
public:
Date(int year = 1900, int month = 1, int day = 1)
: _year(year)
, _month(month)
, _day(day)
{}
private:
int _year;
int _month;
int _day;
};
ostream& operator<<(ostream& _cout, const Date& d)
{
_cout << d._year << "-" << d._month << "-" << d._day;
return _cout;
}
istream& operator>>(istream& _cin, Date& d)
{
_cin >> d._year;
_cin >> d._month;
_cin >> d._day;
return _cin;
}
int main()
{
Date d;
cin >> d;
cout << d << endl;
return 0;
}

说明:

1、友元函数可访问类的私有和保护成员,但不是类的成员函数
2、友元函数不能用const修饰
3、 友元函数可以在类定义的任何地方声明,不受类访问限定符限制
4、一个函数可以是多个类的友元函数
5、友元函数的调用与普通函数的调用原理相同

友元类:
友元类的所有成员函数都可以是另一个类的友元函数,都可以访问另一个类中的非公有成员。

  • 友元关系是单向的,不具有交换性。 比如上述Time类和Date类,在Time类中声明Date类为其友元类,那么可以在Date类中直接访问Time类的私有成员变量,但想在Time类中访问Date类中私有的成员变量则不行。
  • 友元关系不能传递如果C是B的友元, B是A的友元,则不能说明C时A的友元。
  • 友元关系不能继承
class Time
{
 friend class Date;  // 声明日期类为时间类的友元类,则在日期类中就直接访问Time类
中的私有成员变量
public:
Time(int hour = 0, int minute = 0, int second = 0)
: _hour(hour)
, _minute(minute)
, _second(second)
{}
private:
 int _hour;
 int _minute;
 int _second;
};
class Date
{
public:
 Date(int year = 1900, int month = 1, int day = 1)
   : _year(year)
   , _month(month)
   , _day(day)
 {}
 void SetTimeOfDate(int hour, int minute, int second)
 {
   // 直接访问时间类私有的成员变量
   _t._hour = hour;
   _t._minute = minute;
   _t._second = second;
 }
private:
 int _year;
 int _month;
 int _day;
 Time _t;
};

3.3. 内部类

1、概念:
如果一个类定义在另一个类的内部,这个内部类就叫做内部类。内部类是一个独立的类,它不属于外部类,更不能通过外部类的对象去访问内部类的成员。外部类对内部类没有任何优越的访问权限。
注意:内部类就是外部类的友元类,参见友元类的定义,内部类可以通过外部类的对象参数来访问外部类中的所有成员。但是外部类不是内部类的友元。

2、特性:

  1. 内部类可以定义在外部类的public、protected、private都是可以的。
  2. 注意内部类可以直接访问外部类中的static成员,不需要外部类的对象/类名。
  3. sizeof(外部类)=外部类,和内部类没有任何关系。
class A
{
private:
static int k;
int h;
public:
class B // B天生就是A的友元
{
public:
void foo(const A& a)
{
cout << k << endl;//OK
cout << a.h << endl;//OK
}
};
};
int A::k = 1;
int main()
{
  A::B b;
  b.foo(A());
 
  return 0;
}

3.4.匿名对象

class A
{
public:
    A(int a = 0)
    :_a(a)
    {
       cout << "A(int a)" << endl;
    }
     ~A()
     {
      cout << "~A()" << endl;
     }
private:
int _a;
};
class Sum {
      public:
      int Sum_int(int n) 
     {
    //...
      return n;
     }
};
int main()
{
         A a();
// 不能这么定义对象,因为编译器无法识别下面是一个函数声明,还是对象定义
         A()
// 但是我们可以这么定义匿名对象,匿名对象的特点不用取名字,
// 但是他的生命周期只有这一行,我们可以看到下一行他就会自动调用析构函数
     Sum().Sum_int(10);
     return 0;
}

3.5.拷贝对象时的一些编译器优化

在传参和传返回值的过程中,一般编译器会做一些优化,减少对象的拷贝,这个在一些场景下还是非常有用的。

class A
{
public:
	A(int a = 0)
		:_a(a)
	{
		cout << "A(int a)" << endl;
	}
	A(const A& aa)
		:_a(aa._a)
	{
		cout << "A(const A& aa)" << endl;
	}
	A& operator=(const A& aa)
	{
		cout << "A& operator=(const A& aa)" << endl;
		if (this != &aa)
		{
		_a = aa._a;
		}
		return *this;
    }
	~A()
	{
		cout << "~A()" << endl;
	}
private:
	int _a;
};
void func1(A aa)
{

}
void func2(const A& aa)
{

}
int main()
{
	A aa1 = 1; // 构造+拷贝构造 -》 优化为直接构造
	func1(aa1); // 无优化
	func1(2); // 构造+拷贝构造 -》 优化为直接构造
	func1(A(3)); // 构造+拷贝构造 -》 优化为直接构造
	cout << "----------------------------------" << endl;

	func2(aa1);  // 无优化
	func2(2);    // 无优化
	func2(A(3)); // 无优化
	return 0;
}

临时对象,匿名对象都具有常性,用&接收,相当于权限放大,所以要加const修饰。加了const&就没有优化了,因为没有拷贝构造。

class A
{
public:
	A(int a = 0)
		:_a(a)
	{
		cout << "A(int a)" << endl;
	}
	A(const A& aa)
		:_a(aa._a)
	{
		cout << "A(const A& aa)" << endl;
	}
	A& operator=(const A& aa)
	{
		cout << "A& operator=(const A& aa)" << endl;
		if (this != &aa)
		{
		_a = aa._a;
		}
		return *this;
    }
	~A()
	{
		cout << "~A()" << endl;
	}
private:
	int _a;
};

A func3()
{
	A aa;
	return aa; 
}

A func4()
{
	return A();
}

int main()
{
	func3();//构造+拷贝构造
	A aa1 = func3(); // 拷贝构造+拷贝构造  -- 优化为一个拷贝构造
	cout << "****" << endl;
	A aa2;
	aa2 = func3();  // 不能优化
	cout << "---------------------------" << endl;
	func4(); // 构造+拷贝构造 -- 优化为构造
	A aa3 = func4(); // 构造+拷贝构造+拷贝构造  -- 优化为构造

	return 0;
}

对象返回:
1、接收返回值对象,尽量拷贝构造方式,不要赋值接收。
2、函数中返回对象时,尽量返回匿名对象。
函数传参:尽量使用const&传参

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.coloradmin.cn/o/357858.html

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈,一经查实,立即删除!

相关文章

LeetCode——51. N 皇后

一、题目 按照国际象棋的规则&#xff0c;皇后可以攻击与之处在同一行或同一列或同一斜线上的棋子。 n 皇后问题 研究的是如何将 n 个皇后放置在 nn 的棋盘上&#xff0c;并且使皇后彼此之间不能相互攻击。 给你一个整数 n &#xff0c;返回所有不同的 n 皇后问题 的解决方案…

CS144-Lab4

概述 在实验0中&#xff0c;你实现了流量控制的字节流(ByteStream)的抽象概念。 在实验1、2和3中&#xff0c;你实现了该抽象概念与互联网提供的抽象概念之间的转换工具&#xff1a;不可靠的数据报(IP或UDP)。 现在&#xff0c;你已经接近顶峰&#xff1a;一个可以工作的TCP…

Word处理控件Aspose.Words功能演示:使用 C++ 在 Word 文档中查找和替换文本

Aspose.Words 是一种高级Word文档处理API&#xff0c;用于执行各种文档管理和操作任务。API支持生成&#xff0c;修改&#xff0c;转换&#xff0c;呈现和打印文档&#xff0c;而无需在跨平台应用程序中直接使用Microsoft Word Aspose API支持流行文件格式处理&#xff0c;并允…

如何使用MidJourney和ChatGPT制作动画短片?

Ammaar Reshi当我制作这部使用生成式人工智能制作的蝙蝠侠动画短片时——我不知道它会在不到一周的时间内获得 700 万次观看。想学&#xff01;给我们讲解下是整体的制作流程吧&#xff01;&#xff01;opusAmmaar Reshi我不是电影制作人&#xff0c;也从未写过剧本。我只是有还…

高频面试题|JVM虚拟机的体系结构是什么样的?

一. 前言最近有很多小伙伴都在找工作&#xff0c;他们在面试时经常被面试官问到一个问题&#xff1a;请说说JVM虚拟机的体系结构是什么样的?很多小伙伴都能说出堆、栈等相关内容&#xff0c;但面试官紧接着又问&#xff0c;你还知道其他内容吗&#xff1f;这时不少小伙伴就语塞…

STM32模拟SPI协议获取24位模数转换(24bit ADC)芯片AD7791电压采样数据

STM32模拟SPI协议获取24位模数转换&#xff08;24bit ADC&#xff09;芯片AD7791电压采样数据 STM32大部分芯片只有12位的ADC采样性能&#xff0c;如果要实现更高精度的模数转换如24位ADC采样&#xff0c;则需要连接外部ADC实现。AD7791是亚德诺(ADI)半导体一款用于低功耗、24…

C语言--回调函数

1. 什么是回调函数&#xff1f; 回调函数&#xff0c;光听名字就比普通函数要高大上一些&#xff0c;那到底什么是回调函数呢&#xff1f;恕我读得书少&#xff0c;没有在那本书上看到关于回调函数的定义。我在百度上搜了一下&#xff0c;发现众说纷纭&#xff0c;有很大一部分…

力扣-部门工资前三高的所有员工

大家好&#xff0c;我是空空star&#xff0c;本篇带大家了解一道稍微复杂的力扣sql练习题。 文章目录前言一、题目&#xff1a;185. 部门工资前三高的所有员工二、解题1.正确示范①提交SQL运行结果2.正确示范②提交SQL运行结果3.其他总结前言 上一篇带大家练习了部门工资最高的…

CUDA硬件实现

CUDA硬件实现 文章目录CUDA硬件实现4.1 SIMT 架构4.2 硬件多线程NVIDIA GPU 架构围绕可扩展的多线程流式多处理器 (SM: Streaming Multiprocessors) 阵列构建。当主机 CPU 上的 CUDA 程序调用内核网格时&#xff0c;网格的块被枚举并分发到具有可用执行能力的多处理器。一个线程…

【C++】1.C++基础

1.命名空间 使用命名空间的目的是对标识符的名称进行本地化&#xff0c;以避免命名冲突或名字污染&#xff0c;namespace关键字的出现就是针对这种问题的。 1定义 定义命名空间&#xff0c;需要使用到namespace关键字&#xff0c;后面跟命名空间的名字&#xff0c;然后接一对…

DepGraph:适用任何结构的剪枝

文章目录摘要1、简介2、相关工作3、方法3.1、神经网络中的依赖关系3.2、依赖关系图3.3、使用依赖图剪枝4、实验4.1、设置。4.2、CIFAR的结果4.3、消融实验4.4、适用任何结构剪枝5、结论摘要 论文链接&#xff1a;https://arxiv.org/abs/2301.12900 源码&#xff1a;https://gi…

软考高级-信息系统管理师之质量管理(最新版)

质量管理目录 项目质量管理质量管理基础质量与项目质量质量管理质量管理标准体系1、IS09000系列,8项基本原则如下。2、全面质量管理(TQM)3、六西格码意为“六倍标准差”,4、软件过程改迸与能力成熟度模型项目质量管理过程规划质量管理1、规划质量管理2、规划质量管理:输入3、…

【java】Spring Cloud --Spring Cloud 的核心组件

文章目录前言一、Eureka&#xff08;注册中心&#xff09;二、Zuul&#xff08;服务网关&#xff09;三、 Ribbon&#xff08;负载均衡&#xff09;四、Hystrix&#xff08;熔断保护器&#xff09;五、 Feign&#xff08;REST转换器&#xff09;六、 Config&#xff08;分布式配…

【C++】RBTree——红黑树

文章目录一、红黑树的概念二、红黑树的性质三、红黑树节点的定义四、红黑树的插入五、代码实现一、红黑树的概念 红黑树&#xff0c;是一种二叉搜索树&#xff0c;但在每个结点上增加一个存储位表示结点的颜色&#xff0c;可以是Red或Black。 通过对任何一条从根到叶子的路径上…

Python爬虫(7)selenium3种弹窗定位后点击操作,解决点击登录被隐藏iframe无法点击的登陆问题

之前的文章有关于更多操作方式详细解答&#xff0c;本篇基于前面的知识点进行操作&#xff0c;如果不了解可以先看之前的文章 Python爬虫&#xff08;1&#xff09;一次性搞定Selenium(新版)8种find_element元素定位方式 Python爬虫&#xff08;2&#xff09;-Selenium控制浏览…

看见统计——第四章 统计推断:频率学派

看见统计——第四章 统计推断&#xff1a;频率学派 接下来三节的主题是中心极限定理的应用。在不了解随机变量序列 {Xi}\{X_i\}{Xi​} 的潜在分布的情况下&#xff0c;对于大样本量&#xff0c;中心极限定理给出了关于样本均值的声明。例如&#xff0c;如果 YYY 是一个 N(0&am…

Spring系列-2 Bean的生命周期

背景&#xff1a; 作为Spring系列的第二篇&#xff0c;本文结合容器的启动流程介绍单例Bean的生命周期&#xff0c;包括Bean对象的创建、属性设置、初始化、使用、销毁等阶段&#xff1b;在此过程中会介绍Spring用于操作Bean或者BeanDefinition的相关扩展接口。 文章重心在于介…

Spring Boot 日志文件,你都会了吗?

目录 1、日志文件的作用 2、日志的使用 2.1、从程序中得到日志对象 2.2、使用日志 2.3、日志格式 3、日志级别 3.1、这样的日志级别有什么用&#xff1f; 3.2、日志级别分类和使用 3.3、日志级别设置 4、日志持久化 5、更简单的日志输出——lombok 5.1、对比 5.2、…

阅读源码和查看官方文档,是解决问题最高效的办法。

作为一个工作8年的老程序员告诉你&#xff1a;阅读源码和查看官方文档&#xff0c;是解决问题最高效的办法。不信你来看&#xff0c;这个困扰了读者半天的问题我查了源码和文档后瞬间解决。 前言 上周五有位读者私信我一个问题&#xff0c;说困扰了他半天&#xff0c;研究了一…

利用Rust与Flutter开发一款小工具

1.起因 起因是年前看到了一篇Rust iOS & Android&#xff5c;未入门也能用来造轮子&#xff1f;的文章&#xff0c;作者使用Rust做了个实时查看埋点的工具。其中作者的一段话给了我启发&#xff1a; 无论是 LookinServer 、 Flipper 等 Debug 利器&#xff0c;还是 Flutt…