【C++】RBTree——红黑树

news2024/9/21 1:57:54

文章目录

    • 一、红黑树的概念
    • 二、红黑树的性质
    • 三、红黑树节点的定义
    • 四、红黑树的插入
    • 五、代码实现

一、红黑树的概念

红黑树,是一种二叉搜索树,但在每个结点上增加一个存储位表示结点的颜色,可以是Red或Black。 通过对任何一条从根到叶子的路径上各个结点着色方式的限制,红黑树确保没有一条路径会比其他路径长出俩倍,因而是接近平衡的 。(既最长路径长度不超过最短路径长度的 2 倍

ps:树的路径是从根节点走到空节点(此处为NIL 节点)才算一条路径

image-20230214154206317

二、红黑树的性质

  • 每个结点不是红色就是黑色

  • 根结点是黑色

  • 如果一个结点是红色的,则它的两个孩子结点是黑色的(没有连续的红色结点)

  • 对于每个结点,从该节点到其所有后代叶结点的简单路径上,均包含相同数目的黑色结点

  • 每个叶子结点都是黑色的(此处的叶子结点指的是空节点,NIL节点),如果是空树,空节点也是黑色,符合第一个性质

理解最长路径长度不超过最短路径长度的 2 倍

根据第三个性质:红黑树不会出现连续的红色结点,根据第四个性质:从每个结点到所有后代结点的路径上包含相同数目的黑色结点。

极端场景:最短路径上全黑,一条路径黑色节点的数量,最长路径上是一黑一红相间的路径

image-20230218092204948


三、红黑树节点的定义

三叉链结构,对比AVL数节点的定义,把平衡因子替换成节点颜色,采用枚举的方式:

//结点颜色
enum Color
{
	RED,
	BLACK,
};

template<class K, class V >
struct RBTreeNode
{
	pair<K, V> _kv;
	RBTreeNode<K, V>* _left;
	RBTreeNode<K, V>* _right;
	RBTreeNode<K, V>* _parent;

	Color _col;
	RBTreeNode(const pair<K,V>& kv)
		:_kv(kv)
		,_left(nullptr)
		,_right(nullptr)
		,_parent(nullptr)
		,_col(RED)
	{}
};

这里可以清楚的看到,构造结点时默认设置为红色,问题来了:

如果插入的是黑色结点那就是不符合第四个性质(路径上均包含相同的黑色结点),此时我们必须要去进行维护每条路径的黑色结点

如果插入的是红色结点那就是不符合第三个性质(没有出现连续的红色结点),但是我们并不一定需要调整,如果根刚好为黑色,就不需要进行调整。

所以如果插入为红色结点,不一定会破坏结构,但是如果插入黑色结点我们就必须去进行维护了

image-20230214154435924


四、红黑树的插入

红黑树插入的操作部分和AVL树的插入一样:

  • 找到待插入位置
  • 将待插入结点插入到树中
  • 调整:若插入结点的父结点是红色的,我们就需要对红黑树进行调整

前两步大差不差

因为新节点的默认颜色是红色,因此:如果其双亲节点的颜色是黑色,没有违反红黑树任何性质,则不需要调整;但当新插入节点的双亲节点颜色为红色时,就违反了性质三不能有连在一起的红色节点,此时需要对红黑树分情况来讨论

关键在于对红黑树进行调整:为了能够展示出各种情况,这里有一个基本的模型:

image-20230214161011985

约定:cur为当前节点,p为父节点,g为祖父节点,u为叔叔节点

情况一:cur为红,p为红,g为黑,u存在且为红 :

cur为红,p为红,g为黑,u存在且为红

image-20230214162034016

关键看u结点,根结点的颜色为黑色,不能有连续的红色结点,所以上面的情况已经出现连续的红色结点了,此时我们需要进行调整:

把p结点改为黑色,同时把u结点也改为黑色(符合性质四:每条路径上的黑色节点数量相同),最后在把g结点改为红色;如果g是子树的话,g一定会有双亲,为了维持每条路径上黑色节点的数量,g必须变红,不然会多出一个黑色节点,在把g结点当做cur结点继续往上调整,当g为根结点时,在把g置为黑色:

image-20230214171037553

代码实现:

      while (parent && parent->_col == RED)
		{
			Node* grandfater = parent->_parent;
			if (parent == grandfater->_left)
			{
				Node* uncle = grandfater->_right;
				//情况一:u存在且为红
				if (uncle && uncle->_col == RED)
				{
					parent->_col = uncle->_col = BLACK;
					grandfater->_col = RED;

					cur = grandfater;
					parent = cur->_parent;
				}
				else//其他情况
				{
				}
			}
			else//parent==grandfater->_right
			{
				Node* uncle = grandfater->_left;
				if (uncle && uncle->_col == RED)
				{
					parent->_col = uncle->_col = BLACK;
					grandfater->_col = RED;

					cur = grandfater;
					parent = cur->_parent;
				}
				else
				{
				}

			}
		}
		_root->_col = BLACK;

情况二:cur为红,p为红,g为黑,u不存在/u为黑,gpc在同一侧:

image-20230215100710996

此时u的情况:

如果u结点不存在,则cur一定是新增结点,因为如果cur不是新增结点:则cur和p一定有一个节点时黑色,就不满足每条路径都有相同的黑色结点的性质。

如果u结点存在,则其一定是黑色的,那么c节点原来的颜色一定是黑色,在其子树调整过程中变为了红色

如果p为g的左孩子,cur为p的左孩子,则进行右单旋转;

如果p为g的右孩子,cur为p的右孩子,则进行左单旋转

同时,p、g变色–p变黑,g变红

以下情况:u不存在,cur为新增节点,进行右单旋:

image-20230214185139940

以下情况:u结点存在且为黑:

image-20230215103330582

情况三: cur为红,p为红,g为黑,u不存在/u为黑,gpc不在同一侧:

image-20230215104233139

这时候我们就需要进行双旋了:

p为g的左孩子,cur为p的右孩子,对p做左单旋转;
p为g的右孩子,cur为p的左孩子,对p做右单旋转;
旋转之后则转换成了情况2,在继续进行调整即可

image-20230215115401377


五、代码实现

送上源码

#pragma once
#include <iostream>
#include <assert.h>
#include <time.h>
using namespace std;
enum Color
{
	RED,
	BLACK,
};
template<class K, class V >
struct RBTreeNode
{
	pair<K, V> _kv;
	RBTreeNode<K, V>* _left;
	RBTreeNode<K, V>* _right;
	RBTreeNode<K, V>* _parent;

	Color _col;
	RBTreeNode(const pair<K,V>& kv)
		:_kv(kv)
		,_left(nullptr)
		,_right(nullptr)
		,_parent(nullptr)
		,_col(RED)
	{}
};

template<class K,class V>
class RBTree
{
	typedef RBTreeNode<K, V> Node;
public:
	bool Insert(const pair<K, V>& kv)
	{
		if (_root == nullptr)
		{
			_root = new Node(kv);
			_root->_col = BLACK;
			return true;
		}
		Node* parent = nullptr;
		Node* cur = _root;
		while (cur)
		{
			if (cur->_kv.first < kv.first)
			{
				parent = cur;
				cur = cur->_right;
			}
			else if (cur->_kv.first > kv.first)
			{
				parent = cur;
				cur = cur->_left;
			}
			else
			{
				return false;
			}
		}
		cur = new Node(kv);
		cur->_col = RED;
		if (parent->_kv.first < kv.first)
		{
			parent->_right = cur;
			cur->_parent = parent;
		}
		else
		{
			parent->_left = cur;
			cur->_parent = parent;
		}

		while (parent && parent->_col == RED)
		{
			Node* grandfater = parent->_parent;
			if (parent == grandfater->_left)
			{
				Node* uncle = grandfater->_right;
				//情况一:u存在且为红
				if (uncle && uncle->_col == RED)
				{
					parent->_col = uncle->_col = BLACK;
					grandfater->_col = RED;
					//向上调整
					cur = grandfater;
					parent = cur->_parent;
				}
				else
				{
					//情况2
					if (cur == parent->_left)
					{
						RotateR(grandfater);
						parent->_col = BLACK;
						grandfater->_col = RED;
					}
					//情况3
					else
					{
						//       g
						//  p
						//    c 
						RotateL(parent);
						RotateR(grandfater);
						cur->_col = BLACK;
						grandfater->_col = RED;
					}
					break;
				}
			}
			else//parent==grandfater->_right
			{
				Node* uncle = grandfater->_left;
				//情况1:u存在且为红色
				if (uncle && uncle->_col == RED)
				{
					uncle->_col = parent->_col = BLACK;
					grandfater->_col = RED;
					//向上调整
					cur = grandfater;
					parent = cur->_parent;
				}
				else
				{
					//情况2:u不存在/u存在为黑色
					//g
					//    p
					//        c
					if (cur == parent->_right)
					{
						RotateL(grandfater);
						grandfater->_col = RED;
						parent->_col = BLACK;
					}
					//情况3
					//     g
					 //         p
					 //      c
					else
					{
						RotateR(parent);
						RotateL(grandfater);
						cur->_col = BLACK;
						grandfater->_col = RED;
					}
					break;
				}

			}
		}
		//根变黑
		_root->_col = BLACK;
		return true;
	}

	void RotateL(Node* parent)
	{
		Node* subR = parent->_right;
		Node* subRL = subR->_left;
		parent->_right = subRL;
		if (subRL)
			subRL->_parent = parent;
		Node* ppNode = parent->_parent;
		subR->_left = parent;
		parent->_parent = subR;
		if (ppNode == nullptr)
		{
			_root = subR;
			_root->_parent = nullptr;
		}
		else
		{
			if (ppNode->_left == parent)
			{
				ppNode->_left = subR;
			}
			else
			{
				ppNode->_right = subR;
			}
			subR->_parent = ppNode;
		}
	}

	void RotateR(Node* parent)
	{
		Node* subL = parent->_left;
		Node* subLR = subL->_right;
		parent->_left = subLR;
		if (subLR)
			subLR->_parent = parent;
		Node* ppNode = parent->_parent;
		parent->_parent = subL;
		subL->_right = parent;
		if (ppNode == nullptr)
		{
			_root = subL;
			_root->_parent = nullptr;
		}
		else
		{
			if (ppNode->_left == parent)
			{
				ppNode->_left = subL;
			}
			else
			{
				ppNode->_right = subL;
			}
			subL->_parent = ppNode;
		}
	}


	void InOrder()
	{
		_InOrder(_root);
	}
	void _InOrder(Node* root)
	{
		if (root == nullptr)
			return;
		_InOrder(root->_left);
		cout << root->_kv.first << ":" << root->_kv.second << endl;
		_InOrder(root->_right);
	}


	bool Check(Node*root,int blackNum,int ref)
	{
		if (root == nullptr)
		{
			//cout << blackNum << endl;
			if (blackNum != ref)
			{
				cout << "违反规则:本条路径的黑色结点的数量根最左路径不相等" << endl;
				return false;
			}
			return true;
		}
		if (root->_col == RED && root->_parent->_col == RED)
		{
			cout << "违反规则:出现连续的红色结点" << endl;
			return false;
		}
		if (root->_col == BLACK)
		{
			++blackNum;
		}
		return Check(root->_left,blackNum,ref)
			&& Check(root->_right,blackNum,ref);
	}

	bool IsBalance()
	{
		if (_root == nullptr)
		{
			return true;
		}

		if (_root->_col != BLACK)
		{
			return false;
		}
		int ref = 0;
		Node* left = _root;
		while (left)
		{
			if (left->_col == BLACK)
			{
				++ref;
			}
			left = left->_left;
		}
		return Check(_root,0,ref);
	}
private:
	Node* _root = nullptr;
};


void TestRBTree1()
{
	//int a[] = { 8, 3, 1, 10, 6, 4, 7, 14, 13 };
	int a[] = { 16, 3, 7, 11, 9, 26, 18, 14, 15 };
	//int a[] = { 4, 2, 6, 1, 3, 5, 15, 7, 16, 14 };
	RBTree<int, int> t;
	for (auto e : a)
	{
		t.Insert(make_pair(e, e));
	}
	t.InOrder();
	cout << t.IsBalance() << endl;
}


void TestRBTree2()
{
	srand(time(0));
	const size_t N = 100000;
	RBTree<int, int> t;
	for (size_t i = 0; i < N; i++)
	{
		size_t x = rand();
		t.Insert(make_pair(x, x));
	}
	cout << t.IsBalance() << endl;

}

本篇结束…

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.coloradmin.cn/o/357834.html

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈,一经查实,立即删除!

相关文章

Python爬虫(7)selenium3种弹窗定位后点击操作,解决点击登录被隐藏iframe无法点击的登陆问题

之前的文章有关于更多操作方式详细解答&#xff0c;本篇基于前面的知识点进行操作&#xff0c;如果不了解可以先看之前的文章 Python爬虫&#xff08;1&#xff09;一次性搞定Selenium(新版)8种find_element元素定位方式 Python爬虫&#xff08;2&#xff09;-Selenium控制浏览…

看见统计——第四章 统计推断:频率学派

看见统计——第四章 统计推断&#xff1a;频率学派 接下来三节的主题是中心极限定理的应用。在不了解随机变量序列 {Xi}\{X_i\}{Xi​} 的潜在分布的情况下&#xff0c;对于大样本量&#xff0c;中心极限定理给出了关于样本均值的声明。例如&#xff0c;如果 YYY 是一个 N(0&am…

Spring系列-2 Bean的生命周期

背景&#xff1a; 作为Spring系列的第二篇&#xff0c;本文结合容器的启动流程介绍单例Bean的生命周期&#xff0c;包括Bean对象的创建、属性设置、初始化、使用、销毁等阶段&#xff1b;在此过程中会介绍Spring用于操作Bean或者BeanDefinition的相关扩展接口。 文章重心在于介…

Spring Boot 日志文件,你都会了吗?

目录 1、日志文件的作用 2、日志的使用 2.1、从程序中得到日志对象 2.2、使用日志 2.3、日志格式 3、日志级别 3.1、这样的日志级别有什么用&#xff1f; 3.2、日志级别分类和使用 3.3、日志级别设置 4、日志持久化 5、更简单的日志输出——lombok 5.1、对比 5.2、…

阅读源码和查看官方文档,是解决问题最高效的办法。

作为一个工作8年的老程序员告诉你&#xff1a;阅读源码和查看官方文档&#xff0c;是解决问题最高效的办法。不信你来看&#xff0c;这个困扰了读者半天的问题我查了源码和文档后瞬间解决。 前言 上周五有位读者私信我一个问题&#xff0c;说困扰了他半天&#xff0c;研究了一…

利用Rust与Flutter开发一款小工具

1.起因 起因是年前看到了一篇Rust iOS & Android&#xff5c;未入门也能用来造轮子&#xff1f;的文章&#xff0c;作者使用Rust做了个实时查看埋点的工具。其中作者的一段话给了我启发&#xff1a; 无论是 LookinServer 、 Flipper 等 Debug 利器&#xff0c;还是 Flutt…

基于springboot+vue的疾病匿名检测查询系统

基于springbootvue的疾病匿名检测查询系统 ✌全网粉丝20W,csdn特邀作者、博客专家、CSDN新星计划导师、java领域优质创作者,博客之星、掘金/华为云/阿里云/InfoQ等平台优质作者、专注于Java技术领域和毕业项目实战✌ &#x1f345;文末获取项目下载方式&#x1f345; 一、项目背…

【拥抱开源】发布自己的项目到maven中央仓库

文章目录&#x1f388;第一步&#xff0c;注册账号&#x1f4bf;第二步&#xff0c;登录&#x1f4c0;第三步&#xff0c;设置信息&#x1f4be;第四步&#xff0c;创建问题&#x1f4f9;第五步&#xff0c;验证信息&#x1f3a5;第六步&#xff0c;上传jar包到中央仓库&#x…

网页中字体混淆的处理(简易方法)——爬虫学习笔记

网页中字体混淆的处理——爬虫学习笔记之评论爬取一、网页分析1、打开某点评网址。2、在网页源代码中寻找评论信息&#xff08;1&#xff09;进入这个“火锅店”的详情页&#xff0c;然后右击“检查”&#xff08;2&#xff09;点上面“刷新”详情页&#xff0c;逐步寻找。&…

RK3288 GPIO记录

1、引脚对应的GPIO 编号第一种 使用/sys/kernel/debug/gpio查询所有gpio引脚的基数第二种 cat /sys/class/gpio/gpiochip248/label对应的label就是GPIO引脚&#xff0c;例如下图GPIO8对应的基数就是2482、计算编号编号 基数 PIN脚如GPIO8的基数是248&#xff0c; GPIO8_A6的编…

Java开发 - 数风流人物,还看“微服务”

目录 前言 服务器端的发展历程 早期的服务器 动态的页面 用户内容网站 微服务 企业级应用 互联网应用 微服务介绍 什么是微服务&#xff1f; 为什么使用微服务 怎么使用微服务 Spring Cloud 什么是Spring Cloud Nacos注册中心 什么是Nacos 创建微服务项目 创建…

【Servlet篇】一文带你吃透Request对象

文章目录1. 前言2. Request 对象2.1 Request 继承体系2.2 Request 获取请求参数1. 获取请求行数据2. 获取请求头数据3. 获取请求体数据4. 获取请求参数的通用方式3. IDEA中快速创建 Servlet你问我青春还剩几年&#xff1f;我的回答是&#xff0c;趁现在&#xff0c;正当时。身边…

CS144-Lab2

实验架构 除了写入传入流之外&#xff0c;TCPReceiver 还负责通知 sender 两件事&#xff1a; “First unassembled” 字节的索引&#xff0c;称为“acknowledgment”或 “ackno”。这是接收方需要来自发送方的第一个字节。“first unassembled ” 索引和“first unacceptable…

【项目精选】基于SSH的任务调度系统的设计与实现(视频+源码+论文)

点击下载源码 虽然科技进步在改革开发这几十年来速度飞快&#xff0c;计算机行业也发展迅速&#xff0c;但仍然有大量商家或企业&#xff0c;甚至项目组&#xff0c;采用落后的人工管理方式或者低效的任务调度策略&#xff0c;这无疑是对计算机的一种无视。 计算机处理信息的准…

Python每日一练(20230220)

目录 1. 存在重复元素 II 2. 按要求实现程序功能 3. 分割链表 附录 链表 1. 存在重复元素 II 给定一个整数数组和一个整数 k&#xff0c;判断数组中是否存在两个不同的索引 i 和 j&#xff0c;使得 nums [i] nums [j]&#xff0c;并且 i 和 j 的差的 绝对值 至多为 k。 …

高级数据类型

为了解决单一的业务而存在bitmapsBitmaps类型的基础操作 获取指定key对应偏移量上的bit值getbit key offset 设置指定key对应偏移量上的bit值&#xff0c;value只能是1或0setbit key offset valueBitmaps类型的扩展操作状态位的统计业务需求&#xff1a;1. 统计每天某一部电…

云计算ACP云服务器ECS实例题库(三)

&#x1f618;作者简介&#xff1a;一名99年软件运维应届毕业生&#xff0c;正在自学云计算课程。&#x1f44a;宣言&#xff1a;人生就是B&#xff08;birth&#xff09;和D&#xff08;death&#xff09;之间的C&#xff08;choise&#xff09;&#xff0c;做好每一个选择。&…

关于监控服务器指标、CPU、内存、警报的一些解决方案

文章目录关于监控服务器指标、CPU、内存、警报的一些解决方案Prometheus Grafana 配置 IRIS / Cach 监控服务器Prometheus简介特点架构图Grafana简介特点配置流程自定义Prometheus接口定义配置 Exporter 监控服务器系统资源简介配置流程使用 Alertmanager报警简介配置流程基于…

软考高级-信息系统管理师之知识管理(最新版)

知识管理 知识与知识管理知识管理常用的方法和工具显性知识的管理隐形知识的管理知识管理的工具学习型组织知识产权保护计算机软件保护条例商标法专利法补充建议学的考点:知识与知识管理 1、知识的分类 知识可分为两类,分别是显性知识与隐性知识。 凡是能以文字与数字来表达…

【C++】关联式容器——map和set的使用

文章目录一、关联式容器二、键值对三、树形结构的关联式容器1.set2.multiset3.map4.multimap四、题目练习一、关联式容器 序列式容器&#x1f4d5;:已经接触过STL中的部分容器&#xff0c;比如&#xff1a;vector、list、deque、forward_list(C11)等&#xff0c;这些容器统称为…