2023年美赛C题Wordle预测问题一建模及Python代码详细讲解

news2024/11/16 3:46:20

在这里插入图片描述

相关链接

(1)2023年美赛C题Wordle预测问题一建模及Python代码详细讲解
(2)2023年美赛C题Wordle预测问题二建模及Python代码详细讲解
(3)2023年美赛C题Wordle预测问题三、四建模及Python代码详细讲解
(4)2023年美赛C题Wordle预测问题25页论文

C题:Wordle预测

代码运行环境
编译器:vsCode
编程语言:Python
如果要运行代码,出现错误了,不要着急,百度一下错误,一般都是哪个包没有安装,用conda命令或者pip命令都能安装上。

1、问题一

1.1 第一小问

第一小问,建立一个时间序列预测模型,首先对数据按先后顺序排序,查看数据分布

import pandas as pd
import datetime as dt
import numpy as np
import matplotlib.pyplot as plt
import seaborn as sns
from  scipy.stats import skew,kurtosis

pd.options.display.notebook_repr_html=False  # 表格显示
plt.rcParams['figure.dpi'] = 75  # 图形分辨率
sns.set_theme(style='darkgrid')  # 图形主题

df = pd.read_excel('data/Problem_C_Data_Wordle.xlsx',header=1)
data = df.drop(columns='Unnamed: 0')
data['Date'] = pd.to_datetime(data['Date'])
data.set_index("Date", inplace=True)
data.sort_index(ascending=True,inplace=True)
data

在这里插入图片描述

(1)查看数据分布


sns.lineplot(x="Date", y="Number of  reported results",data=data)
plt.savefig('img/1.png',dpi=300)
plt.show()

在这里插入图片描述

(2)使用箱线图进行查看异常值,300000以上是异常值,黑色的,需要进行处理,本代码中采用的向前填充法,就是用异常值前一天的数据来填充。

sns.boxplot(data['Number of  reported results'],color='red')
plt.savefig('img/2.png',dpi=300)

在这里插入图片描述

(3)因为Number of reported results是数值特征,在线性回归模型中,为了取得更好的建模效果,在建立回归评估模型之前,应该检查确认样本的分布,如果符合正态分布,则这种训练集是及其理想的,否则应该补充完善训练集或者通过技术手段对训练集进行优化。由KDE图和Q-Q图可知,价格属性呈右偏分布且不服从正态部分,在回归之前需要对数据进一步数据转换。

import scipy.stats as st
plt.figure(figsize=(20, 6))
y = data.Numbers
plt.subplot(121)
plt.title('johnsonsu Distribution fitting',fontsize=20)
sns.distplot(y, kde=False, fit=st.johnsonsu, color='Red')

y2 = data.Numbers
plt.subplot(122)
st.probplot(y2, dist="norm", plot=plt)
plt.title('Q-Q Figure',fontsize=20)
plt.xlabel('X quantile',fontsize=15)
plt.ylabel('Y quantile',fontsize=15)
plt.savefig('img/5.png',dpi=300)
plt.show()

转换前

在这里插入图片描述

转换后,注意,预测得到的结果,还要转换回来,采用指数转换。公式是log(x) =y,x=e^y。

import scipy.stats as st
plt.figure(figsize=(20, 6))
y = np.log(data.Numbers)
plt.subplot(121)
plt.title('johnsonsu Distribution fitting',fontsize=20)
sns.distplot(y, kde=False, fit=st.johnsonsu, color='Red')

y2 = np.log(data.Numbers)
plt.subplot(122)
st.probplot(y2, dist="norm", plot=plt)
plt.title('Q-Q Figure',fontsize=20)
plt.xlabel('X quantile',fontsize=15)
plt.ylabel('Y quantile',fontsize=15)
plt.savefig('img/6.png',dpi=300)
plt.show()

在这里插入图片描述

(4)可视化所有特征与label的相关性,采用皮尔逊相关性方法,筛选相关性较高作为数据集的特征。得到41个特征。

# 可视化Top20相关性最高的特征
df =data.copy()
corr = df[["target_t1"]+features].corr().abs()
k = 15
col =  corr.nlargest(k,'target_t1')['target_t1'].index
plt.subplots(figsize = (10,10))
plt.title("Pearson correlation with label")
sns.heatmap(df[col].corr(),annot=True,square=True,annot_kws={"size":14},cmap="YlGnBu")
plt.savefig('img/10.png',dpi=300)
plt.show()

在这里插入图片描述

(5)划分数据集前,需要标准化特征数据,标准化后,将1-11月的数据作为训练集,12月的数据作为测试集。可以看到用简单线性回归可以拟合曲线。

data_feateng = df[features + targets].dropna()
nobs= len(data_feateng)
print("样本数量: ", nobs)
X_train = data_feateng.loc["2022-1":"2022-11"][features]
y_train = data_feateng.loc["2022-1":"2022-11"][targets]

X_test = data_feateng.loc["2022-12"][features]
y_test = data_feateng.loc["2022-12"][targets]

n, k = X_train.shape
print("Train: {}{}, \nTest: {}{}".format(X_train.shape, y_train.shape,
                                              X_test.shape, y_test.shape))

plt.plot(y_train.index, y_train.target_t1.values, label="train")
plt.plot(y_test.index, y_test.target_t1.values, label="test")
plt.title("Train/Test split")
plt.legend()
plt.xticks(rotation=45)
plt.savefig('img/11.png',dpi=300)
plt.show()

在这里插入图片描述

(5)采用线性回归

from sklearn.linear_model import LinearRegression
from sklearn.metrics import mean_squared_error

X_train = data_feateng.loc["2022-1":"2022-11"][features]
y_train = data_feateng.loc["2022-1":"2022-11"][targets]

X_test = data_feateng.loc["2022-12"][features]
y_test = data_feateng.loc["2022-12"][targets]
reg = LinearRegression().fit(X_train, y_train["target_t1"])
p_train = reg.predict(X_train)
p_test = reg.predict(X_test)

y_pred = np.exp(p_test*std+mean)
y_true = np.exp(y_test["target_t1"]*std+mean)


RMSE_test = np.sqrt(mean_squared_error(y_true,y_pred))
print("Test RMSE: {}".format(RMSE_test))

模型误差是RMSE: 1992.293296317915

模型训练和预测

from sklearn.linear_model import LinearRegression
reg = LinearRegression().fit(X_train, y_train["target_t1"])
p_train = reg.predict(X_train)
arr = np.array(X_test).reshape((1,-1))
p_test = reg.predict(arr)


y_pred = np.exp(p_test*std+mean)
print(f"预测区间是[{int(y_pred-RMSE_test)}{int(y_pred+int(RMSE_test))}]")

在这里插入图片描述

预测得到的结果减去误差,得到预测区间的左边界,加上误差,得到预测区间的右边界。最后得出的预测区间是【18578-22562】

1.2 第二小问

我提取了每个单词中每个字母位置的特征(如a编码为1,b编码为2,c编码为3依次类推,z编码为26,那5个单词的位置就填入相应的数值,类似于ont-hot编码)、元音的字母的频率(五个单词中元音字母出现了几次),辅音字母的频率(5个单词中辅音字母出现了几次),还有一个是单词的词性(形容词,副词,名词等等,这部分没有做)

特征在代码中未这几个:‘w1’,‘w2’,‘w3’,‘w4’,‘w5’,‘Vowel_fre’,‘Consonant_fre’

然后分别计算1-7次尝试百分比与这几个特征的相关性,采用皮尔逊相关性方法。同学们,继续对图片中的数值进行解读,应用到论文中,可以用表格阐述。

import pandas as pd
import numpy as np
import matplotlib.pyplot as plt
import seaborn as sns

df = pd.read_excel('data/Problem_C_Data_Wordle.xlsx',header=1)
data = df.drop(columns='Unnamed: 0')
data['Date'] = pd.to_datetime(data['Date'])
df.set_index('Date',inplace=True)
df.sort_index(ascending=True,inplace=True)
df =data.copy()
df['Words']  = df['Word'].apply(lambda x:str(list(x))[1:-1].replace("'","").replace(" ",""))
df['w1'], df['w2'],df['w3'], df['w4'],df['w5'] = df['Words'].str.split(',',n=4).str
df

在这里插入图片描述

small = [str(chr(i)) for i in range(ord('a'),ord('z')+1)]
letter_map = dict(zip(small,range(1,27)))
letter_map

{‘a’: 1, ‘b’: 2, ‘c’: 3, ‘d’: 4, ‘e’: 5, ‘f’: 6, ‘g’: 7, ‘h’: 8, ‘i’: 9, ‘j’: 10, ‘k’: 11, ‘l’: 12, ‘m’: 13, ‘n’: 14, ‘o’: 15, ‘p’: 16, ‘q’: 17, ‘r’: 18, ‘s’: 19, ‘t’: 20, ‘u’: 21, ‘v’: 22, ‘w’: 23, ‘x’: 24, ‘y’: 25, ‘z’: 26}

df['w1'] = df['w1'].map(letter_map)
df['w2'] = df['w2'].map(letter_map)
df['w3'] = df['w3'].map(letter_map) 
df['w4'] = df['w4'].map(letter_map)
df['w5'] = df['w5'].map(letter_map)
df

在这里插入图片描述

(1)统计元音辅音频率

Vowel = ['a','e','i','o','u'] 
Consonant = list(set(small).difference(set(Vowel)))
def count_Vowel(s):
    c = 0
    for i in range(len(s)):
        if s[i] in Vowel:
            c+=1
    return c
def count_Consonant(s):
    c = 0
    for i in range(len(s)):
        if s[i] in Consonant:
            c+=1
    return c

df['Vowel_fre'] = df['Word'].apply(lambda x:count_Vowel(x)) 
df['Consonant_fre'] = df['Word'].apply(lambda x:count_Consonant(x)) 
df

在这里插入图片描述

(2)分析相关性

# 可视化Top20相关性最高的特征
features = ['w1','w2','w3','w4','w5','Vowel_fre','Consonant_fre']
label = ['1 try','6 tries','6 tries','6 tries','6 tries','6 tries','7 or more tries (X)']
n = 11
for i in label:
    corr = df[[i]+features].corr().abs()
    k = len(features)
    col =  corr.nlargest(k,i)[i].index
    plt.subplots(figsize = (10,10))
    plt.title(f"Pearson correlation with {i}")
    sns.heatmap(df[col].corr(),annot=True,square=True,annot_kws={"size":14},cmap="YlGnBu")
    plt.savefig(f'img/1/{n}.png',dpi=300)
    n+=1
    plt.show()

在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述

3 Code

Code获取,在浏览器中输入:betterbench.top/#/40/detail,或者Si我

剩下的问题二、三、四代码实现,在我主页查看,陆续发布出来。

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.coloradmin.cn/o/356247.html

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈,一经查实,立即删除!

相关文章

史密斯圆图

在射频、微波中,常常使用史密斯圆图来做阻抗匹配。在不涉及复杂的数学推导,仍能把圆图用起来。 比如,共轭匹配。 RL1jX,需要找到-jX来抵消jX,消掉虚部之后,只留下实部,最终等效为RL‘1。 史密…

Android 基础知识4-2.7 RelativeLayout(相对布局)

一、RelativeLayout的概述 RelativeLayout(相对布局)是一种根据父容器和兄弟控件作为参照来确定控件位置的布局方式。在很多时候,线性布局还不能满足我们的需求,比如,我们在一行(列)上显示多个控…

C#反射原理

一、前言反射(Reflection)的内容在博客中已经写了一篇,什么是反射,反射的使用,反射优缺点总结;在面试中突然被问道反射的原理,按照理解反射就是在Reflection命名空间和对象的Type对象获取类的方…

Innodb索引还不清楚?看这一篇就够啦

1. 索引是什么 1.1 初识索引 ------------------- | id | name | age | ------------------- | 1 | 帅哥1 | 30 | | 2 | 帅哥2 | 18 | | 3 | 帅哥3 | 25 | | 4 | 帅哥4 | 21 | | 5 | 帅哥5 | 29 | | 6 | 帅哥6 | 35 | -------------------…

基于飞桨PaddleClas完成半导体晶圆图谱缺陷种类识别

wolfmax老狼,飞桨领航团无锡团团长,飞桨开发者技术专家(PPDE),AICA六期学员,某半导体CIM软件集成商图像算法工程师,主要研究方向为图像检测、图像分割等算法。• 作者AI Studio主页https://aist…

Android开发:Activity启动模式

1.怎样设置Activity的启动模式 可以在清单文件中自己添加活动的启动模式, android : launchMode"standard", 不写的话系统默认就是标准模式. 2.启动模式 2.1.默认启动模式 标准启动模式就是栈, 打开一个活动就将活动压入栈中, 返回就将活动退出栈中. 不同的Activit…

老大react说:schedule,我们今年的小目标是一个亿

hello,这里是潇晨,今天来讲个故事 讲个故事: 从前,有家z公司,z公司的ceo叫react,它收下有个小弟或者叫小leader,schedule schedule每天负责消化老大react画的大饼,然后将拆解成一…

如何开始写Python爬虫?给入门Python小白一条清晰的学习路线

记录一下我自己从零开始写Python爬虫的心得吧! 我刚开始对爬虫不是很了解,又没有任何的计算机、编程基础,确实有点懵逼。从哪里开始,哪些是最开始应该学的,哪些应该等到有一定基础之后再学,也没个清晰的概…

Java程序怎么运行?final、static用法小范围类型转大范围数据类型可以吗?

文章目录1.能将int强制转换为byte类型的变量吗?如果该值大于byte类型的范围,将会出现什么现象?2. Java程序是如何执行的?3.final 在 Java 中有什么作用?4.final有哪些用法?5.static都有哪些用法?1.能将int强制转换为…

Rust学习入门--【16】Rust 借用所有权 Borrowing / 引用

系列文章目录 Rust 语言是一种高效、可靠的通用高级语言,效率可以媲美 C / C 。本系列文件记录博主自学Rust的过程。欢迎大家一同学习。 Rust学习入门–【1】引言 Rust学习入门–【2】Rust 开发环境配置 Rust学习入门–【3】Cargo介绍 Rust学习入门–【4】Rust 输…

KubeSphere 社区双周报 | OpenFunction 集成 WasmEdge | 2023.02.03-02.16

KubeSphere 社区双周报主要整理展示新增的贡献者名单和证书、新增的讲师证书以及两周内提交过 commit 的贡献者,并对近期重要的 PR 进行解析,同时还包含了线上/线下活动和布道推广等一系列社区动态。 本次双周报涵盖时间为:2023.02.03-2023.…

众德全自动批量剪辑工具,批量去重伪原创视频,全自动合成探店带货等视频

众德全自动批量剪辑工具已连续更新两年,服务了大大小小的自媒体公司工作室共200多个,成就了几百个草根创业者,实现月入10万,自从创办众德传媒之前,我一直坚信自媒体才是年轻草根创业者的出路,不需要技术门槛…

整合K8s+SpringCloudK8s+SpringBoot+gRpc

本文使用K8s当做服务注册与发现、配置管理&#xff0c;使用gRpc用做服务间的远程通讯一、先准备K8s我在本地有个K8s单机二、准备service-providerpom<?xml version"1.0" encoding"UTF-8"?> <project xmlns"http://maven.apache.org/POM/4.…

2023年PMP考试教材有哪些?(含pmp资料)

PMP考试教材是《PMBOK指南》&#xff0c;但这次的考试因为大纲的更新&#xff0c;而需要另外的敏捷书籍来备考。且官方发了通知&#xff0c;3、5月还是第六版指南&#xff0c;8月及8月之后&#xff0c;使用第七版教材。 新版考纲将专注于以下三个新领域: 人 – 强调与有效领导项…

java设计模式——观察者模式

概述 定义:又被称为发布-订阅(Publish/Subscribe)模式&#xff0c;它定义了一种一对多的依赖关系&#xff0c;让多个观察者对象同时监听某一个主题对象。这个主题对象在状态变化时&#xff0c;会通知所有的观察者对象&#xff0c;使他们能够自动更新自己。 结构 在观察者模式…

数据分析:旅游景点销售门票和消费情况分析

数据分析&#xff1a;旅游景点销售门票和消费情况分析 文章目录数据分析&#xff1a;旅游景点销售门票和消费情况分析一、前言二、数据准备三、分析数据四、用户购买门票数量分析五、用户复购分析六、用户回购分析七、占比分析1.每个月分层用户占比情况。2.每月不同用户的占比3…

网络模型OSI

网络模型OSI定义模型分布数据封装、解封过程数据链路层1.LLC逻辑链路控制子层(Logic Link Control Sub Layer)2.MAC媒介访问控制子层(Medium Acess Control Sub Layer)CSMA/CARST-CST原理OSI定义 OSI&#xff1a;Open Systems Interconnection Reference Model&#xff0c;开放…

2023年前端开发的八大趋势,值得你关注下

随着新年的到来&#xff0c;许多人制定了提高自己和工作的决心。对于前端开发人员而言&#xff0c;跟上最新的潮流趋势是成功的关键。特别是在经济不好的情况下&#xff0c;很多科技专家在最近一个季度内被解雇&#xff0c;这更加强调了这一点。在2023年&#xff0c;有许多令人…

学习 Python 之 Pygame 开发坦克大战(五)

学习 Python 之 Pygame 开发坦克大战&#xff08;五&#xff09;坦克大战完善地图1. 创建砖墙2. 给砖墙增加子弹击中的碰撞效果3. 给砖墙坦克不能通过的碰撞效果坦克大战完善地图 我的素材放到了百度网盘里&#xff0c;里面还有原版坦克大战素材&#xff0c;我都放在一起来&am…

Blazor入门100天 : 身份验证和授权 (2) - 角色/组件/特性/过程逻辑

目录 建立默认带身份验证 Blazor 程序角色/组件/特性/过程逻辑DB 改 Sqlite将自定义字段添加到用户表脚手架拉取IDS文件,本地化资源freesql 生成实体类,freesql 管理ids数据表初始化 Roles,freesql 外键 > 导航属性完善 freesql 和 bb 特性 本节源码 https://github.com/…