压缩20M文件从30秒到1秒的优化过程

news2025/1/11 7:55:34

压缩20M文件从30秒到1秒的优化过程

有一个需求需要将前端传过来的10张照片,然后后端进行处理以后压缩成一个压缩包通过网络流传输出去。之前没有接触过用Java压缩文件的,所以就直接上网找了一个例子改了一下用了,改完以后也能使用,但是随着前端所传图片的大小越来越大的时候,耗费的时间也在急剧增加,最后测了一下压缩20M的文件竟然需要30秒的时间。压缩文件的代码如下。

public static void zipFileNoBuffer() {
    File zipFile = new File(ZIP_FILE);
    try (ZipOutputStream zipOut = new ZipOutputStream(new FileOutputStream(zipFile))) {
        //开始时间
        long beginTime = System.currentTimeMillis();

        for (int i = 0; i < 10; i++) {
            try (InputStream input = new FileInputStream(JPG_FILE)) {
                zipOut.putNextEntry(new ZipEntry(FILE_NAME + i));
                int temp = 0;
                while ((temp = input.read()) != -1) {
                    zipOut.write(temp);
                }
            }
        }
        printInfo(beginTime);
    } catch (Exception e) {
        e.printStackTrace();
    }
}

这里找了一张2M大小的图片,并且循环十次进行测试。打印的结果如下,时间大概是30秒。

fileSize:20M
consum time:29599

第一次优化过程-从30秒到2秒

进行优化首先想到的是利用缓冲区BufferInputStream。在FileInputStreamread()方法每次只读取一个字节。源码中也有说明。

/**
 * Reads a byte of data from this input stream. This method blocks
 * if no input is yet available.
 *
 * @return     the next byte of data, or <code>-1</code> if the end of the
 *             file is reached.
 * @exception  IOException  if an I/O error occurs.
 */
public native int read() throws IOException;

这是一个调用本地方法与原生操作系统进行交互,从磁盘中读取数据。每读取一个字节的数据就调用一次本地方法与操作系统交互,是非常耗时的。例如我们现在有30000个字节的数据,如果使用FileInputStream那么就需要调用30000次的本地方法来获取这些数据,而如果使用缓冲区的话(这里假设初始的缓冲区大小足够放下30000字节的数据)那么只需要调用一次就行。因为缓冲区在第一次调用read()方法的时候会直接从磁盘中将数据直接读取到内存中。随后再一个字节一个字节的慢慢返回。

BufferedInputStream内部封装了一个byte数组用于存放数据,默认大小是8192

优化过后的代码如下

public static void zipFileBuffer() {
    File zipFile = new File(ZIP_FILE);
    try (ZipOutputStream zipOut = new ZipOutputStream(new FileOutputStream(zipFile));
            BufferedOutputStream bufferedOutputStream = new BufferedOutputStream(zipOut)) {
        //开始时间
        long beginTime = System.currentTimeMillis();
        for (int i = 0; i &lt; 10; i++) {
            try (BufferedInputStream bufferedInputStream = new BufferedInputStream(new FileInputStream(JPG_FILE))) {
                zipOut.putNextEntry(new ZipEntry(FILE_NAME + i));
                int temp = 0;
                while ((temp = bufferedInputStream.read()) != -1) {
                    bufferedOutputStream.write(temp);
                }
            }
        }
        printInfo(beginTime);
    } catch (Exception e) {
        e.printStackTrace();
    }
}

输出

------Buffer
fileSize:20M
consum time:1808

可以看到相比较于第一次使用FileInputStream效率已经提升了许多了

第二次优化过程-从2秒到1秒

使用缓冲区buffer的话已经是满足了我的需求了,但是秉着学以致用的想法,就想着用NIO中知识进行优化一下。

使用Channel

为什么要用Channel呢?因为在NIO中新出了ChannelByteBuffer。正是因为它们的结构更加符合操作系统执行I/O的方式,所以其速度相比较于传统IO而言速度有了显著的提高。Channel就像一个包含着煤矿的矿藏,而ByteBuffer则是派送到矿藏的卡车。也就是说我们与数据的交互都是与ByteBuffer的交互。

在NIO中能够产生FileChannel的有三个类。分别是FileInputStreamFileOutputStream、以及既能读又能写的RandomAccessFile

源码如下

public static void zipFileChannel() {
    //开始时间
    long beginTime = System.currentTimeMillis();
    File zipFile = new File(ZIP_FILE);
    try (ZipOutputStream zipOut = new ZipOutputStream(new FileOutputStream(zipFile));
            WritableByteChannel writableByteChannel = Channels.newChannel(zipOut)) {
        for (int i = 0; i &lt; 10; i++) {
            try (FileChannel fileChannel = new FileInputStream(JPG_FILE).getChannel()) {
                zipOut.putNextEntry(new ZipEntry(i + SUFFIX_FILE));
                fileChannel.transferTo(0, FILE_SIZE, writableByteChannel);
            }
        }
        printInfo(beginTime);
    } catch (Exception e) {
        e.printStackTrace();
    }
}

我们可以看到这里并没有使用ByteBuffer进行数据传输,而是使用了transferTo的方法。这个方法是将两个通道进行直连。

This method is potentially much more efficient than a simple loop
* that reads from this channel and writes to the target channel.  Many
* operating systems can transfer bytes directly from the filesystem cache
* to the target channel without actually copying them. 

这是源码上的描述文字,大概意思就是使用transferTo的效率比循环一个Channel读取出来然后再循环写入另一个Channel好。操作系统能够直接传输字节从文件系统缓存到目标的Channel中,而不需要实际的copy阶段。

> copy阶段就是从内核空间转到用户空间的一个过程

可以看到速度相比较使用缓冲区已经有了一些的提高。

------Channel
fileSize:20M
consum time:1416

内核空间和用户空间

那么为什么从内核空间转向用户空间这段过程会慢呢?首先我们需了解的是什么是内核空间和用户空间。在常用的操作系统中为了保护系统中的核心资源,于是将系统设计为四个区域,越往里权限越大,所以Ring0被称之为内核空间,用来访问一些关键性的资源。Ring3被称之为用户空间。

 

> 用户态、内核态:线程处于内核空间称之为内核态,线程处于用户空间属于用户态

那么我们如果此时应用程序(应用程序是都属于用户态的)需要访问核心资源怎么办呢?那就需要调用内核中所暴露出的接口用以调用,称之为系统调用。例如此时我们应用程序需要访问磁盘上的文件。此时应用程序就会调用系统调用的接口open方法,然后内核去访问磁盘中的文件,将文件内容返回给应用程序。大致的流程如下

 

直接缓冲区和非直接缓冲区

既然我们要读取一个磁盘的文件,要废这么大的周折。有没有什么简单的方法能够使我们的应用直接操作磁盘文件,不需要内核进行中转呢?有,那就是建立直接缓冲区了。

  • 非直接缓冲区:非直接缓冲区就是我们上面所讲内核态作为中间人,每次都需要内核在中间作为中转。

  • 直接缓冲区:直接缓冲区不需要内核空间作为中转copy数据,而是直接在物理内存申请一块空间,这块空间映射到内核地址空间和用户地址空间,应用程序与磁盘之间数据的存取通过这块直接申请的物理内存进行交互。

既然直接缓冲区那么快,我们为什么不都用直接缓冲区呢?其实直接缓冲区有以下的缺点。直接缓冲区的缺点:

  1. 不安全

  2. 消耗更多,因为它不是在JVM中直接开辟空间。这部分内存的回收只能依赖于垃圾回收机制,垃圾什么时候回收不受我们控制。

  3. 数据写入物理内存缓冲区中,程序就丧失了对这些数据的管理,即什么时候这些数据被最终写入从磁盘只能由操作系统来决定,应用程序无法再干涉。

> 综上所述,所以我们使用transferTo方法就是直接开辟了一段直接缓冲区。所以性能相比而言提高了许多

使用内存映射文件

NIO中新出的另一个特性就是内存映射文件,内存映射文件为什么速度快呢?其实原因和上面所讲的一样,也是在内存中开辟了一段直接缓冲区。与数据直接作交互。源码如下

//Version 4 使用Map映射文件
public static void zipFileMap() {
    //开始时间
    long beginTime = System.currentTimeMillis();
    File zipFile = new File(ZIP_FILE);
    try (ZipOutputStream zipOut = new ZipOutputStream(new FileOutputStream(zipFile));
            WritableByteChannel writableByteChannel = Channels.newChannel(zipOut)) {
        for (int i = 0; i &lt; 10; i++) {

            zipOut.putNextEntry(new ZipEntry(i + SUFFIX_FILE));

            //内存中的映射文件
            MappedByteBuffer mappedByteBuffer = new RandomAccessFile(JPG_FILE_PATH, "r").getChannel()
                    .map(FileChannel.MapMode.READ_ONLY, 0, FILE_SIZE);

            writableByteChannel.write(mappedByteBuffer);
        }
        printInfo(beginTime);
    } catch (Exception e) {
        e.printStackTrace();
    }
}

打印如下

---------Map
fileSize:20M
consum time:1305

可以看到速度和使用Channel的速度差不多的。

使用Pipe

Java NIO 管道是2个线程之间的单向数据连接。Pipe有一个source通道和一个sink通道。其中source通道用于读取数据,sink通道用于写入数据。可以看到源码中的介绍,大概意思就是写入线程会阻塞至有读线程从通道中读取数据。如果没有数据可读,读线程也会阻塞至写线程写入数据。直至通道关闭。

 Whether or not a thread writing bytes to a pipe will block until another
 thread reads those bytes

 

我想要的效果是这样的。源码如下

//Version 5 使用Pip
public static void zipFilePip() {

    long beginTime = System.currentTimeMillis();
    try(WritableByteChannel out = Channels.newChannel(new FileOutputStream(ZIP_FILE))) {
        Pipe pipe = Pipe.open();
        //异步任务
        CompletableFuture.runAsync(()-&gt;runTask(pipe));

        //获取读通道
        ReadableByteChannel readableByteChannel = pipe.source();
        ByteBuffer buffer = ByteBuffer.allocate(((int) FILE_SIZE)*10);
        while (readableByteChannel.read(buffer)&gt;= 0) {
            buffer.flip();
            out.write(buffer);
            buffer.clear();
        }
    }catch (Exception e){
        e.printStackTrace();
    }
    printInfo(beginTime);

}

//异步任务
public static void runTask(Pipe pipe) {

    try(ZipOutputStream zos = new ZipOutputStream(Channels.newOutputStream(pipe.sink()));
            WritableByteChannel out = Channels.newChannel(zos)) {
        System.out.println("Begin");
        for (int i = 0; i &lt; 10; i++) {
            zos.putNextEntry(new ZipEntry(i+SUFFIX_FILE));

            FileChannel jpgChannel = new FileInputStream(new File(JPG_FILE_PATH)).getChannel();

            jpgChannel.transferTo(0, FILE_SIZE, out);

            jpgChannel.close();
        }
    }catch (Exception e){
        e.printStackTrace();
    }
}

总结

  • 生活处处都需要学习,有时候只是一个简单的优化,可以让你深入学习到各种不同的知识。所以在学习中要不求甚解,不仅要知道这个知识也要了解为什么要这么做。

  • 知行合一:学习完一个知识要尽量应用一遍。这样才能记得牢靠。

源码地址: https://www.oschina.net/action/GoToLink?url=https%3A%2F%2Fgithub.com%2Fmodouxiansheng%2FDoraemon

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.coloradmin.cn/o/355336.html

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈,一经查实,立即删除!

相关文章

(考研湖科大教书匠计算机网络)第四章网络层-第九节:虚拟专用网与网络地址转换

获取pdf&#xff1a;密码7281专栏目录首页&#xff1a;【专栏必读】考研湖科大教书匠计算机网络笔记导航 文章目录一&#xff1a;虚拟专用网&#xff08;1&#xff09;虚拟专用网是什么&#xff08;2&#xff09;虚拟专用网如何分配IP地址&#xff08;3&#xff09;例子&#x…

【JAVA八股文】框架相关

框架相关1. Spring refresh 流程2. Spring bean 生命周期3. Spring bean 循环依赖解决 set 循环依赖的原理4. Spring 事务失效5. Spring MVC 执行流程6. Spring 注解7. SpringBoot 自动配置原理8. Spring 中的设计模式1. Spring refresh 流程 Spring refresh 概述 refresh 是…

深度学习(1)神经网络基础

要学习深度学习&#xff0c;那么首先要熟悉神经网络&#xff08;Neural Networks&#xff0c;简称NN&#xff09;的一些基本概念。当然&#xff0c;这里所说的神经网络不是生物学的神经网络&#xff0c;我们将其称之为人工神经网络&#xff08;Artificial Neural Networks&…

海豚调度2.0.5 星环驱动包踩坑(二)worker服务正常、zk注册正常,心跳时间不更新,也不执行任务,任务一直处于执行中状态

目录背景问题记录20230206 发现服务启动失败20230215 有一台worker不执行作业&#xff0c;其它均正常问题解决问题思考背景 之前分享过海豚调度2.0.5连接星环库使用记录&#xff0c;后来说存储过程又出现了超时的情况&#xff0c;原因是因为调度星环驱动包和生产星环库驱动包不…

ES 异常写入解决流程

问题说明 一天下午&#xff0c;在北京客户现场的同学反馈我们elasticsearch出现的大量的异常&#xff0c;他反馈说他使用多线程写入大量数据到elasticsearch集群时&#xff0c;隔一段时间之后就会出现CircuitBreakingException&#xff0c;多尝试几次后&#xff0c;他就把问题反…

基于微信小程序的微信社团小程序

文末联系获取源码 开发语言&#xff1a;Java 框架&#xff1a;ssm JDK版本&#xff1a;JDK1.8 服务器&#xff1a;tomcat7 数据库&#xff1a;mysql 5.7/8.0 数据库工具&#xff1a;Navicat11 开发软件&#xff1a;eclipse/myeclipse/idea Maven包&#xff1a;Maven3.3.9 浏览器…

JavaEE|网络原理·上

文章目录一、网络发展史1.独立模式2.网络互联3.局域网&#xff08;LAN&#xff09;4.广域网&#xff08;WAN&#xff09;局域网组网的方式①基于网线直连②基于集线器&#xff08;hub&#xff09;组建③基于交换机(switch)组建④基于交换机和路由器组建二、网络通信基础1.ip地址…

Winform控件开发(14)——NotifyIcon(史上最全)

前言: 先看个气泡提示框的效果: 代码如下: 在一个button中注册click事件,当我们点击button1时,就能显示气泡 private void button1_Click(object sender, EventArgs e){notifyIcon1.Visible = true;notifyIcon1

【论文速递】ICLR2018 - 用于小样本语义分割的条件网络

【论文速递】ICLR2018 - 用于小样本语义分割的条件网络 【论文原文】&#xff1a;CONDITIONAL NETWORKS FOR FEW-SHOT SEMANTIC SEGMENTATION&#xff08;Workshop track - ICLR 2018&#xff09; 【作者信息】&#xff1a;Kate Rakelly Evan Shelhamer Trevor Darrell Alexe…

PyTorch - Conv2d 和 MaxPool2d

文章目录Conv2d计算Conv2d 函数解析代码示例MaxPool2d计算函数说明卷积过程动画Transposed convolution animationsTransposed convolution animations参考视频&#xff1a;土堆说 卷积计算 https://www.bilibili.com/video/BV1hE411t7RN 关于 torch.nn 和 torch.nn.function t…

Reverse入门[不断记录]

文章目录前言一、[SWPUCTF 2021 新生赛]re1二、[SWPUCTF 2021 新生赛]re2三、[GFCTF 2021]wordy[花指令]四、[NSSRound#3 Team]jump_by_jump[花指令]五、[NSSRound#3 Team]jump_by_jump_revenge[花指令]前言 心血来潮&#xff0c;想接触点Reverse&#xff0c;感受下Reverse&am…

网络编程(一)

网络编程 文章目录网络编程前置概念1- 字节序高低地址与高低字节高低地址&#xff1a;高低字节字节序大端小端例子代码判断当前机器是大端还是小端为何要有字节序字节序转换函数需要字节序转换的时机例子一例子二2- IP地址转换函数早期(不用管)举例现在与字节序转换函数相比:**…

模块化热更思路

title: 模块化热更思路 categories: Others tags: [热更, 模块化, 分包] date: 2023-02-18 01:04:57 comments: false mathjax: true toc: true 模块化热更 浅浅的记录一下访问破 200w (But, I don’t care about this.) 前篇 只谈思路, 不贴实现代码. 需求 游戏类型属于合集…

Linux(十三)设计模式——单例模式

设计模式——针对典型场景所设计出来的特别的处理方案 单例模式&#xff1a;一个类只能实例化一个对象&#xff08;所以叫单例&#xff09; 场景&#xff1a; 1、资源角度&#xff1a;资源在内存中只占有一份 2、数据角度&#xff1a;如果只有一个对象&#xff0c;那么该对象在…

2019蓝桥杯真题质数(填空题) C语言/C++

题目描述 本题为填空题&#xff0c;只需要算出结果后&#xff0c;在代码中使用输出语句将所填结果输出即可。 我们知道第一个质数是 2、第二个质数是 3、第三个质数是 5…… 请你计算第 2019 个质数是多少&#xff1f; 运行限制 最大运行时间&#xff1a;1s 最大运行内存: 128M…

Mac下安装Tomcat以及IDEA中的配置

安装brew 打开终端输入以下命令&#xff1a; /usr/bin/ruby -e "$(curl -fsSL https://raw.githubusercontent.com/Homebrew/install/master/install)" 搜索tomcat版本&#xff0c;输入以下命令&#xff1a; brew search tomcat 安装自己想要的版本&#xff0c;例…

JDK版本区别

1. 泛型 ArrayList listnew ArrayList()------>ArrayList<Integer>listnew ArrayList<Integer>(); 2 自动装箱/拆箱 nt ilist.get(0).parseInt();-------->int ilist.get(0);原始类型与对应的包装类不用显式转换 3 for-each i0;i<a.length;i------------&…

解析从Linux零拷贝深入了解Linux-I/O(上)

本文将从文件传输场景以及零拷贝技术深究 Linux I/O 的发展过程、优化手段以及实际应用。前言 存储器是计算机的核心部件之一&#xff0c;在完全理想的状态下&#xff0c;存储器应该要同时具备以下三种特性&#xff1a; 速度足够快&#xff1a;存储器的存取速度应当快于 CPU …

JWT安全漏洞以及常见攻击方式

前言 随着web应用的日渐复杂化&#xff0c;某些场景下&#xff0c;仅使用Cookie、Session等常见的身份鉴别方式无法满足业务的需要&#xff0c;JWT也就应运而生&#xff0c;JWT可以有效的解决分布式场景下的身份鉴别问题&#xff0c;并且会规避掉一些安全问题&#xff0c;如CO…

python+vue微信小程序的线上服装店系统

服装行业是一个传统的行业。根据当前发展现状,网络信息时代的全面普及,服装行业也在发生着变化,单就服饰这一方面,利用手机购物正在逐步进入人们的生活。传统的购物方式,不仅会耗费大量的人力、时间,有时候还会出错。小程序系统伴随智能手机为我们提供了新的方向。手机线上服装…