高可用的“异地多活”架构设计

news2024/11/17 9:54:29

前言

后台服务可以划分为两类,有状态和无状态。高可用对于无状态的应用来说是比较简单的,无状态的应用,只需要通过 F5 或者任何代理的方式就可以很好的解决。后文描述的主要是针对有状态的服务进行分析。

服务端进行状态维护主要是通过磁盘或内存进行保存,比如 MySQL 数据库,redis 等内存数据库。除了这两种类型的维护方式,还有 jvm 的内存的状态维持,但jvm的状态生命周期通常很短。

高可用

1、高可用的一些解决方案

高可用,从发展来看,大致经过了这几个过程:

  • 冷备

  • 双机热备

  • 同城双活

  • 异地双活

  • 异地多活

在聊异地多活的时候,还是先看一些其他的方案,这有利于我们理解很多设计的缘由。

冷备

冷备,通过停止数据库对外服务的能力,通过文件拷贝的方式将数据快速进行备份归档的操作方式。简而言之,冷备,就是复制粘贴,在 linux 上通过 cp 命令就可以很快完成。可以通过人为操作,或者定时脚本进行。有如下好处:

  • 简单

  • 快速备份(相对于其他备份方式)

  • 快速恢复。只需要将备份文件拷贝回工作目录即完成恢复过程(亦或者修改数据库的配置,直接将备份的目录修改为数据库工作目录)。更甚,通过两次mv命令就可瞬间完成恢复。

  • 可以按照时间点恢复。比如,几天前发生的拼多多优惠券漏洞被人刷掉很多钱,可以根据前一个时间点进行还原,“挽回损失”。

以上的好处,对于以前的软件来说,是很好的方式。但是对于现如今的很多场景,已经不好用了,因为:

  • 服务需要停机。n个9肯定无法做到了。然后,以前我们的停机冷备是在凌晨没有人使用的时候进行,但是现在很多的互联网应用已经是面向全球了,所以,任何时候都是有人在使用的。

  • 数据丢失。如果不采取措施,那么在完成了数据恢复后,备份时间点到还原时间内的数据会丢失。传统的做法,是冷备还原以后,通过数据库日志手动恢复数据。比如通过 redo日志,更甚者,我还曾经通过业务日志去手动回放请求恢复数据。恢复是极大的体力活,错误率高,恢复时间长。

  • 冷备是全量备份。全量备份会造成磁盘空间浪费,以及容量不足的问题,只能通过将备份拷贝到其他移动设备上解决。所以,整个备份过程的时间其实更长了。

  • 想象一下每天拷贝几个T的数据到移动硬盘上,需要多少移动硬盘和时间。并且,全量备份是无法定制化的,比如只备份某一些表,是无法做到的。

如何权衡冷备的利弊,是每个业务需要考虑的。

双机热备

热备,和冷备比起来,主要的差别是不用停机,一边备份一边提供服务。但还原的时候还是需要停机的。由于我们讨论的是和存储相关的,所以不将共享磁盘的方式看作双机热备。

  • Active/Standby模式

相当于1主1从,主节点对外提供服务,从节点作为backup。通过一些手段将数据从主节点同步到从节点,当故障发生时,将从节点设置为工作节点。数据同步的方式可以是偏软件层面,也可以是偏硬件层面的。偏软件层面的,比如mysql的master/slave方式,通过同步binlog的方式;sqlserver的订阅复制方式。偏硬件层面,通过扇区和磁盘的拦截等镜像技术,将数据拷贝到另外的磁盘。偏硬件的方式,也被叫做数据级灾备;偏软件的,被叫做应用级灾备。后文谈得更多的是应用级灾备。

  • 双机互备

本质上还是Active/Standby,只是互为主从而已。双机互备并不能工作于同一个业务,只是在服务器角度来看,更好的压榨了可用的资源。比如,两个业务分别有库A和B,通过两个机器P和Q进行部署。那么对于A业务,P主Q从,对于B业务,Q主P从。整体上看起来是两个机器互为主备。这种架构下,读写分离是很好的,单写多读,减少冲突又提高了效率。

其他的高可用方案还可以参考各类数据库的多种部署模式,比如mysql的主从、双主多从、MHA;redis 的主从,哨兵,cluster 等等。

2、同城双活

前面讲到的几种方案,基本都是在一个局域网内进行的。业务发展到后面,有了同城多活的方案。和前面比起来,不信任的粒度从机器转为了机房。这种方案可以解决某个IDC机房整体挂掉的情况(停电,断网等)。

同城双活其实和前文提到的双机热备没有本质的区别,只是“距离”更远了,基本上还是一样(同城专线网速还是很快的)。双机热备提供了灾备能力,双机互备避免了过多的资源浪费。

在程序代码的辅助下,有的业务还可以做到真正的双活,即同一个业务,双主,同时提供读写,只要处理好冲突的问题即可。需要注意的是,并不是所有的业务都能做到。

业界更多采用的是两地三中心的做法。远端的备份机房能更大的提供灾备能力,能更好的抵抗地震,恐袭等情况。双活的机器必须部署到同城,距离更远的城市作为灾备机房。灾备机房是不对外提供服务的,只作为备份使用,发生故障了才切流量到灾备机房;或者是只作为数据备份。原因主要在于:距离太远,网络延迟太大。

图1 两地三中心

如上图,用户流量通过负载均衡,将服务A的流量发送到IDC1,服务器集A;将服务B的流量发送到IDC2,服务器B;同时,服务器集a和b分别从A和B进行同城专线的数据同步,并且通过长距离的异地专线往IDC3进行同步。当任何一个IDC当机时,将所有流量切到同城的另一个IDC机房,完成了failover。

当城市1发生大面积故障时,比如发生地震导致IDC1和2同时停止工作,则数据在IDC3得以保全。同时,如果负载均衡仍然有效,也可以将流量全部转发到IDC3中。不过,此时IDC3机房的距离非常远,网络延迟变得很严重,通常用户的体验的会受到严重影响的。

图2 两地三中心主从模式

上图是一种基于Master-Slave模式的两地三中心示意图。城市1中的两个机房作为1主1从,异地机房作为从。也可以采用同城双主+keepalived+vip的方式,或者MHA的方式进行failover。但城市2不能(最好不要)被选择为Master。

3、异地双活

同城双活可以应对大部分的灾备情况,但是碰到大面积停电,或者自然灾害的时候,服务依然会中断。对上面的两地三中心进行改造,在异地也部署前端入口节点和应用,在城市1停止服务后将流量切到城市2,可以在降低用户体验的情况下,进行降级。但用户的体验下降程度非常大。

所以大多数的互联网公司采用了异地双活的方案。

图3 简单的异地双活示意图

上图是一个简单的异地双活的示意图。流量经过LB后分发到两个城市的服务器集群中,服务器集群只连接本地的数据库集群,只有当本地的所有数据库集群均不能访问,才failover到异地的数据库集群中。

在这种方式下,由于异地网络问题,双向同步需要花费更多的时间。更长的同步时间将会导致更加严重的吞吐量下降,或者出现数据冲突的情况。吞吐量和冲突是两个对立的问题,你需要在其中进行权衡。例如,为了解决冲突,引入分布式锁/分布式事务;为了解决达到更高的吞吐量,利用中间状态、错误重试等手段,达到最终一致性;降低冲突,将数据进行恰当的sharding,尽可能在一个节点中完成整个事务。

对于一些无法接受最终一致性的业务,饿了么采用的是下图的方式:

对于个别一致性要求很高的应用,我们提供了一种强一致的方案(Global Zone),Globa Zone是一种跨机房的读写分离机制,所有的写操作被定向到一个 Master 机房进行,以保证一致性,读操作可以在每个机房的 Slave库执行,也可以 bind 到 Master 机房进行,这一切都基于我们的数据库访问层(DAL)完成,业务基本无感知。

——《饿了么异地多活技术实现(一)总体介绍》

也就是说,在这个区域是不能进行双活的。采用主从而不是双写,自然解决了冲突的问题。

实际上,异地双活和异地多活已经很像了,双活的结构更为简单,所以在程序架构上不用做过多的考虑,只需要做传统的限流,failover等操作即可。但其实双活只是一个临时的步骤,最终的目的是切换到多活。因为双活除了有数据冲突上的问题意外,还无法进行横向扩展。

异地多活

图4 异地多活的示意图

根据异地双活的思路,我们可以画出异地多活的一种示意图。每个节点的出度和入度都是4,在这种情况下,任何节点下线都不会对业务有影响。但是,考虑到距离的问题,一次写操作将带来更大的时间开销。时间开销除了影响用户体验以外,还带来了更多的数据冲突。在严重的数据冲突下,使用分布式锁的代价也更大。这将导致系统的复杂度上升,吞吐量下降。所以上图的方案是无法使用的。

回忆一下我们在解决网状网络拓扑的时候是怎么优化的?引入中间节点,将网状改为星状:

图5 星状的异地多活

改造为上图后,每个城市下线都不会对数据造成影响。对于原有请求城市的流量,会被重新 LoadBalance 到新的节点(最好是LB到最近的城市)。为了解决数据安全的问题,我们只需要针对中心节点进行处理即可。但是这样,对于中心城市的要求,比其他城市会更高。比如恢复速度,备份完整性等,这里暂时不展开。我们先假定中心是完全安全的。

如果我们已经将异地多活的业务部署为上图的结构,很大程度解决了数据到处同步的问题,不过依然会存在大量的冲突,冲突的情况可以简单认为和双活差不多。那么还有没有更好的方式呢?

这里可以关联一下饿了么的 GlobalZone 方案,总体思路就是“去分布式”,也就是说将写的业务放到一个节点的(同城)机器上。阿里是这么思考的:

阿里理想中的异地多活架构

实际上我猜测很多业务也是按照上图去实现的,比如滴滴打车业务这种,所有的业务都是按城市划分开的。用户、车主、目的地,他们的经纬度通常都是在同一个城市的。单个数据中心并不需要和其他数据中心进行数据交互,只有在统计出报表的时候才需要,但报表是不太注重实时性的。那么,在这种情况下,全国的业务其实可以被很好的sharding的。

但是对于电商这种复杂的场景和业务,按照前文说的方式进行sharding已经无法满足需求了。因为业务线非常复杂,数据依赖也非常复杂,每个数据中心相互进行数据同步的情况无可避免。淘宝的解决方式和我们切分微服务的方式有点类似:

淘宝按照单元切分的异地多活架构

注意看图中的数据同步箭头。以交易单元为例,属于交易单元的业务数据,将与中心单元进行双向同步;不属于交易单元的业务数据,单向从中心单元同步。中心单元承担了最复杂的业务场景,业务单元承担了相对单一的场景。对于业务单元,可以进行弹性伸缩和容灾;对于中心单元,扩展能力较差,稳定性要求更高。可以遇见,大部分的故障都会出现在中心单元。

按照业务进行单元切分,已经需要对代码和架构进行彻底的改造了(可能这也是为什么阿里要先从双活再切到多活,历时3年)。比如,业务拆分,依赖拆分,网状改星状,分布式事务,缓存失效等。除了对于编码的要求很高以外,对测试和运维也有非常大的挑战。

如此复杂的情况,如何进行自动化覆盖,如何进行演练,如何改造流水线。这种级别的灾备,不是一般公司敢做的,投入产出也不成正比。不过还是可以把这种场景当作我们的“假想敌”,去思考我们自己的业务,未来会怎么发展,需要做到什么级别的灾备。相对而言,饿了么的多活方案可能更适合大多数的企业。

本文只是通过画图的方式进行了简单的描述,其实异地多活是需要很多很强大的基础能力的。比如,数据传输,数据校验,数据操作层(简化客户端控制写和同步的过程)等。

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.coloradmin.cn/o/354645.html

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈,一经查实,立即删除!

相关文章

Orin 安装CUDA CUDNN TensorRT Opencv和输入法的环境配置

有两种方法可以安装CUDA环境 第一种方法-用命令按照 在刷机完成的Orin,执行如下命令: sudo apt update sudo apt upgrade sudo apt install nvidia-jetpack -y注释–如果在执行第三行命令,报错的话,先查看nvidia-l4t-apt-so…

初识K8s

概览 k8s 概念和架构从零搭建K8s 集群k8s 核心概念搭建集群监控平台搭建高可用k8s集群集群环境 实际部署项目 k8s 概念和架构 1、K8S概述和特性 概述: k8s是谷歌在2014年开源的容器化集群管理系统使用k8s进行容器化应用部署使用k8s利于应用扩展k8s目标实施让部…

AcWing3416.时间显示——学习笔记

目录 题目 代码 AC结果 思路 关键步骤 题目 3416. 时间显示 - AcWing题库https://www.acwing.com/problem/content/description/3419/ 代码 import java.util.Scanner;public class Main {public static void main(String[] args){Scanner input new Scanner(System.in…

Rust学习入门--【15】Rust 所有权

系列文章目录 Rust 语言是一种高效、可靠的通用高级语言,效率可以媲美 C / C 。本系列文件记录博主自学Rust的过程。欢迎大家一同学习。 Rust学习入门–【1】引言 Rust学习入门–【2】Rust 开发环境配置 Rust学习入门–【3】Cargo介绍 Rust学习入门–【4】Rust 输…

Maven的安装和配置

Maven的安装 1.1Maven是什么? 是阿帕奇的,就是代替原先手动导入jar包的方式 1.官方介绍 视频:百度百科-验证Maven是一款服务于Java平台的自动化构建工具。Maven 作为 Java 项目管理工具,它不仅可以用作包管理,还有许多…

DIDL4_前向传播与反向传播(模型参数的更新)

前向传播与反向传播前向传播与反向传播的作用前向传播及公式前向传播范例反向传播及公式反向传播范例小结前向传播计算图前向传播与反向传播的作用 在训练神经网络时,前向传播和反向传播相互依赖。 对于前向传播,我们沿着依赖的方向遍历计算图并计算其路…

# AutoSar一文概览

1.什么是AutoSar ​ AUTOSAR全称为“AUTomotive Open System ARchitecture”,译为“汽车开放系统体系结构”;AUTOSAR是由 全球各大汽车整车厂、汽车零部件供应商、汽车电子软件系统公司联合建立的一套标准协议、软件架构。 2.为什么汽车行业要定义一个…

DIDL5_数值稳定性和模型初始化

数值稳定性和模型初始化数值稳定性梯度不稳定的影响推导什么是梯度消失?什么是梯度爆炸?如何解决数值不稳定问题?——参数初始化参数初始化的几种方法默认初始化Xavier初始化小结当神经网络变得很深的时候,数值特别容易不稳定。我…

面试题67. 把字符串转换成整数

题目 写一个函数 StrToInt,实现把字符串转换成整数这个功能。不能使用 atoi 或者其他类似的库函数。 首先,该函数会根据需要丢弃无用的开头空格字符,直到寻找到第一个非空格的字符为止。 当我们寻找到的第一个非空字符为正或者负号时&#xf…

密度峰值聚类算法(DPC)

密度峰值聚类算法目录DPC算法1.1 DPC算法的两个假设1.2 DPC算法的两个重要概念1.3 DPC算法的执行步骤1.4 DPC算法的优缺点matlab代码密度计算函数计算delta寻找聚类中心点聚类算法目录 DPC算法 1.1 DPC算法的两个假设 1)类簇中心被类簇中其他密度较低的数据点包围…

kubernetes 教程

K8s 安装kubectl 下载kubectl curl -LO "https://dl.k8s.io/release/**$(**curl -L -s https://dl.k8s.io/release/stable.txt**)**/bin/linux/amd64/kubectl" 安装 sudo install -o root -g root -m 0755 kubectl /usr/local/bin/kubectl 验证 kubectl versi…

学习 Python 之 Pygame 开发坦克大战(二)

学习 Python 之 Pygame 开发坦克大战(二)坦克大战的需求开始编写坦克大战1. 搭建主类框架2. 获取窗口中的事件3. 创建基类4. 初始化我方坦克类5. 完善我方坦克的移动5. 完善我方坦克的显示6. 在主类中加入我方坦克并完成坦克移动7. 初始化子弹类8. 完善子…

(考研湖科大教书匠计算机网络)第五章传输层-第一、二节:传输层概述及端口号、复用分用等概念

获取pdf:密码7281专栏目录首页:【专栏必读】考研湖科大教书匠计算机网络笔记导航 文章目录一:传输层概述(1)概述(2)从计算机网络体系结构角度看传输层(3)传输层意义二&am…

MySQL行转列列转行实例解析

文档准备要求:找出所有的用户没有安装的软件。创建两个表,用户表app_install 和 app表app建表语句:# 创建app表,并插入数据 create table app(id int,app varchar(32)); insert into app(id,app) values (1,微信),(2,QQ),(3,支付宝…

二叉树理论基础知识点

二叉树的种类 在我们解题过程中二叉树有两种主要的形式:满二叉树和完全二叉树 满二叉树 满二叉树:如果一棵二叉树只有度为0的结点和度为2的结点,并且度为0的结点在同一层上,则这棵二叉树为满二叉树。 如图所示: 这…

About Oracle Database Performance Method

bottleneck(瓶颈): a point where resource contention is highest throughput(吞吐量): the amount of work that can be completed in a specified time. response time (响应时间): the time to complete a spec…

Java 日志简介

目录1、Slf4j2、Log4j3、LogBack4、Logback 优点5、ELK1、Slf4j slf4j 的全称是 Simple Loging Facade For Java,即它仅仅是一个为 Java 程序提供日志输出的统一接口,并不是一个具体的日志实现方案,就比如 JDBC 一样,只是一种规则…

解决:eclipse绿化版Resource注解报Resource cannot be resolved to a type问题

如图: 网上解决教程很多,我的eclipse是绿化版的,不需要安装 解决办法如下: 1、在eclipse中,进入到Window->Preferences->Java->Installed JREs中 默认显示如下: 2、点击Add-->Standard VM--…

分页插件

引入依赖 注意需要和SpringBoot的版本对应&#xff0c;否则分页可能不生效 使用的分页依赖&#xff1a; <!-- pagehelper 插件--><dependency><groupId>com.github.pagehelper</groupId><artifactId>pagehelper-spring-boot-starter</arti…

Dockerfile详解及优化技巧

写在前面 Dockerfile的默认相对路径是Dockerfile所在的目录&#xff1b;Dockerfile中的每一行会被视为一层镜像 一、Dockerfile 原理 1.1 镜像定义 首先我们先来回顾一下 Docker 镜像&#xff0c;它由多个只读层堆叠到一起&#xff0c;每一层是上一层的增量修改。基于镜像创…