fast planner总结

news2024/11/16 8:35:04

一、前端 kinodynamic A*算法动力学路径搜索

1.1 路径搜索的主要函数为kinodynamicAstar类的search函数
int KinodynamicAstar::search(Eigen::Vector3d start_pt, Eigen::Vector3d start_v, Eigen::Vector3d start_a,
                             Eigen::Vector3d end_pt, Eigen::Vector3d end_v, bool init, bool dynamic, double time_start)
{
//初始化参数
  start_vel_ = start_v;
  start_acc_ = start_a;

  PathNodePtr cur_node = path_node_pool_[0];
  cur_node->parent = NULL;
  cur_node->state.head(3) = start_pt;
  cur_node->state.tail(3) = start_v;
  cur_node->index = posToIndex(start_pt);
  cur_node->g_score = 0.0;

  Eigen::VectorXd end_state(6);
  Eigen::Vector3i end_index;
  double time_to_goal;

  end_state.head(3) = end_pt;
  end_state.tail(3) = end_v;
  end_index = posToIndex(end_pt);
  cur_node->f_score = lambda_heu_ * estimateHeuristic(cur_node->state, end_state, time_to_goal);
  cur_node->node_state = IN_OPEN_SET;
  open_set_.push(cur_node);
  use_node_num_ += 1;

  if (dynamic)
  {
    time_origin_ = time_start;
    cur_node->time = time_start;
    cur_node->time_idx = timeToIndex(time_start);
    expanded_nodes_.insert(cur_node->index, cur_node->time_idx, cur_node);
    // cout << "time start: " << time_start << endl;
  }
  else
    expanded_nodes_.insert(cur_node->index, cur_node);

  PathNodePtr neighbor = NULL;
  PathNodePtr terminate_node = NULL;
  bool init_search = init;
  const int tolerance = ceil(1 / resolution_);


  while (!open_set_.empty())
  {
    cur_node = open_set_.top();

    // Terminate?
    bool reach_horizon = (cur_node->state.head(3) - start_pt).norm() >= horizon_;
    bool near_end = abs(cur_node->index(0) - end_index(0)) <= tolerance &&
                    abs(cur_node->index(1) - end_index(1)) <= tolerance &&
                    abs(cur_node->index(2) - end_index(2)) <= tolerance;

//当前节点超出horizon或接近目标点,计算一条直达的曲线,并检查曲线是否存在。
//主要为了解决稀疏采样,最终不能精准的到达目标点的问题
    if (reach_horizon || near_end)
    {
      terminate_node = cur_node;
      retrievePath(terminate_node);
      if (near_end)
      {
        // Check whether shot traj exist
        estimateHeuristic(cur_node->state, end_state, time_to_goal);
        computeShotTraj(cur_node->state, end_state, time_to_goal);
        if (init_search)
          ROS_ERROR("Shot in first search loop!");
      }
    }
    if (reach_horizon)
    {
      if (is_shot_succ_)
      {
        std::cout << "reach end" << std::endl;
        return REACH_END;
      }
      else
      {
        std::cout << "reach horizon" << std::endl;
        return REACH_HORIZON;
      }
    }

    if (near_end)
    {
      if (is_shot_succ_)
      {
        std::cout << "reach end" << std::endl;
        return REACH_END;
      }
      else if (cur_node->parent != NULL)
      {
        std::cout << "near end" << std::endl;
        return NEAR_END;
      }
      else
      {
        std::cout << "no path" << std::endl;
        return NO_PATH;
      }
    }

    //开始节点扩展
    open_set_.pop();
    cur_node->node_state = IN_CLOSE_SET;
    iter_num_ += 1;

    double res = 1 / 2.0, time_res = 1 / 1.0, time_res_init = 1 / 20.0;
    Eigen::Matrix<double, 6, 1> cur_state = cur_node->state;
    Eigen::Matrix<double, 6, 1> pro_state;
    vector<PathNodePtr> tmp_expand_nodes;
    Eigen::Vector3d um;
    double pro_t;
    vector<Eigen::Vector3d> inputs;
    vector<double> durations;
    //获取采样输入
    if (init_search)
    {
      inputs.push_back(start_acc_);
      for (double tau = time_res_init * init_max_tau_; tau <= init_max_tau_ + 1e-3;
           tau += time_res_init * init_max_tau_)
        durations.push_back(tau);
      init_search = false;
    }
    else
    {
      for (double ax = -max_acc_; ax <= max_acc_ + 1e-3; ax += max_acc_ * res)
        for (double ay = -max_acc_; ay <= max_acc_ + 1e-3; ay += max_acc_ * res)
          for (double az = -max_acc_; az <= max_acc_ + 1e-3; az += max_acc_ * res)
          {
            um << ax, ay, az;
            inputs.push_back(um);  //输入也储存下,方便后面采样用
          }
      for (double tau = time_res * max_tau_; tau <= max_tau_; tau += time_res * max_tau_)
        durations.push_back(tau);  //输入持续时间
    }

    // cout << "cur state:" << cur_state.head(3).transpose() << endl;
    for (int i = 0; i < inputs.size(); ++i)
      for (int j = 0; j < durations.size(); ++j)
      {
        um = inputs[i];
        double tau = durations[j];
        stateTransit(cur_state, pro_state, um, tau);   //前向积分成路径
        pro_t = cur_node->time + tau;

        Eigen::Vector3d pro_pos = pro_state.head(3);

        // Check if in close set
        Eigen::Vector3i pro_id = posToIndex(pro_pos);
        int pro_t_id = timeToIndex(pro_t);
        PathNodePtr pro_node = dynamic ? expanded_nodes_.find(pro_id, pro_t_id) : expanded_nodes_.find(pro_id);
        if (pro_node != NULL && pro_node->node_state == IN_CLOSE_SET)
        {
          if (init_search)
            std::cout << "close" << std::endl;
          continue;
        }

        // Check maximal velocity
        Eigen::Vector3d pro_v = pro_state.tail(3);
        if (fabs(pro_v(0)) > max_vel_ || fabs(pro_v(1)) > max_vel_ || fabs(pro_v(2)) > max_vel_)
        {
          if (init_search)
            std::cout << "vel" << std::endl;
          continue;
        }

        // Check not in the same voxel
        Eigen::Vector3i diff = pro_id - cur_node->index;
        int diff_time = pro_t_id - cur_node->time_idx;
        if (diff.norm() == 0 && ((!dynamic) || diff_time == 0))
        {
          if (init_search)
            std::cout << "same" << std::endl;
          continue;
        }

        // Check safety
        Eigen::Vector3d pos;
        Eigen::Matrix<double, 6, 1> xt;
        bool is_occ = false;
        for (int k = 1; k <= check_num_; ++k)
        {
          double dt = tau * double(k) / double(check_num_);
          stateTransit(cur_state, xt, um, dt);
          pos = xt.head(3);
          if (edt_environment_->sdf_map_->getInflateOccupancy(pos) == 1 )
          {
            is_occ = true;
            break;
          }
        }
        if (is_occ)
        {
          if (init_search)
            std::cout << "safe" << std::endl;
          continue;
        }
    //计算代价
        double time_to_goal, tmp_g_score, tmp_f_score;
        tmp_g_score = (um.squaredNorm() + w_time_) * tau + cur_node->g_score;
        tmp_f_score = tmp_g_score + lambda_heu_ * estimateHeuristic(pro_state, end_state, time_to_goal);
    //节点裁剪
/*********
首先判断当前临时扩展节点与current node的其他临时扩展节点是否在同一个voxel中,如果是的话,
就要进行剪枝。要判断当前临时扩展节点的fscore是否比同一个voxel的对比fscore小,如果是的话,
则更新这一Voxel节点为当前临时扩展节点。

如果不剪枝的话,则首先判断当前临时扩展节点pro_node是否出现在open集中,如果是不是的话,
则可以直接将pro_node加入open集中。如果存在于open集但还未扩展的话,
则比较当前临时扩展节点与对应VOXEL节点的fscore,若更小,则更新voxel中的节点。

需要进行说明的是,在Fast planner的实现中,open集是通过两个数据结构实现的,
一个队列用来存储,弹出open集中的节点。
另一个哈希表NodeHashtable 用来查询节点是否已经存在于open集中。
而判断一个节点是否存在于close set中,则是通过Nodehashtable 与nodestate来决定的,如果nodeState 是 InCloseSet, 且存在于NodeHashtable, 
则说明该节点已经被扩展过了,存在于close set中。
*****************/
        // Compare nodes expanded from the same parent
        bool prune = false;
        for (int j = 0; j < tmp_expand_nodes.size(); ++j)
        {
          PathNodePtr expand_node = tmp_expand_nodes[j];

          if ((pro_id - expand_node->index).norm() == 0 && ((!dynamic) || pro_t_id == expand_node->time_idx))
          {
            prune = true;
            if (tmp_f_score < expand_node->f_score)
            {
              expand_node->f_score = tmp_f_score;
              expand_node->g_score = tmp_g_score;
              expand_node->state = pro_state;
              expand_node->input = um;
              expand_node->duration = tau;
              if (dynamic)
                expand_node->time = cur_node->time + tau;
            }
            break;
          }
        }

        // This node end up in a voxel different from others
        if (!prune)
        {
          if (pro_node == NULL)
          {
            pro_node = path_node_pool_[use_node_num_];
            pro_node->index = pro_id;
            pro_node->state = pro_state;
            pro_node->f_score = tmp_f_score;
            pro_node->g_score = tmp_g_score;
            pro_node->input = um;
            pro_node->duration = tau;
            pro_node->parent = cur_node;
            pro_node->node_state = IN_OPEN_SET;
            if (dynamic)
            {
              pro_node->time = cur_node->time + tau;
              pro_node->time_idx = timeToIndex(pro_node->time);
            }
            open_set_.push(pro_node);

            if (dynamic)
              expanded_nodes_.insert(pro_id, pro_node->time, pro_node);
            else
              expanded_nodes_.insert(pro_id, pro_node);

            tmp_expand_nodes.push_back(pro_node);

            use_node_num_ += 1;
            if (use_node_num_ == allocate_num_)
            {
              cout << "run out of memory." << endl;
              return NO_PATH;
            }
          }
          else if (pro_node->node_state == IN_OPEN_SET)
          {
            if (tmp_g_score < pro_node->g_score)
            {
              // pro_node->index = pro_id;
              pro_node->state = pro_state;
              pro_node->f_score = tmp_f_score;
              pro_node->g_score = tmp_g_score;
              pro_node->input = um;
              pro_node->duration = tau;
              pro_node->parent = cur_node;
              if (dynamic)
                pro_node->time = cur_node->time + tau;
            }
          }
          else
          {
            cout << "error type in searching: " << pro_node->node_state << endl;
          }
        }
      }
    // init_search = false;
  }

  cout << "open set empty, no path!" << endl;
  cout << "use node num: " << use_node_num_ << endl;
  cout << "iter num: " << iter_num_ << endl;
  return NO_PATH;
}
1.2 启发式函数设置

主要是利用庞特里亚金原理解决两点边界问题,得到最优解后,同时得到代价。image
首先通过设置启发函数对时间求导等于0,得到启发函数关于时间T的四次方程,再通过求解该四次方程,得到一系列实根,通过比较这些实根所对应的cost大小,得到最优时间。这里需要注意,关于时间的一元四次方程是通过费拉里方法求解的,需要嵌套一个元三次方程进行求解,也就是代码中应的cubic()函数。

double KinodynamicAstar::estimateHeuristic(Eigen::VectorXd x1, Eigen::VectorXd x2, double& optimal_time)
{
  const Vector3d dp = x2.head(3) - x1.head(3);
  const Vector3d v0 = x1.segment(3, 3);
  const Vector3d v1 = x2.segment(3, 3);

  double c1 = -36 * dp.dot(dp);
  double c2 = 24 * (v0 + v1).dot(dp);
  double c3 = -4 * (v0.dot(v0) + v0.dot(v1) + v1.dot(v1));
  double c4 = 0;
  double c5 = w_time_;

  std::vector<double> ts = quartic(c5, c4, c3, c2, c1);

  double v_max = max_vel_ * 0.5;
  double t_bar = (x1.head(3) - x2.head(3)).lpNorm<Infinity>() / v_max;
  ts.push_back(t_bar);

  double cost = 100000000;
  double t_d = t_bar;

  for (auto t : ts)
  {
    if (t < t_bar)
      continue;
    double c = -c1 / (3 * t * t * t) - c2 / (2 * t * t) - c3 / t + w_time_ * t;
    if (c < cost)
    {
      cost = c;
      t_d = t;
    }
  }

  optimal_time = t_d;

  return 1.0 * (1 + tie_breaker_) * cost;
}

公式推导参考:https://blog.csdn.net/qq_16775293/article/details/124845417

1.3 这里我们遇到了第二个重要的函数ComputeShotTraj. 即利用庞特里亚金原理解一个两点边值问题。因为最优控制时间已经在estimateHeuristic中计算过了,所以这里只要引入该时间进行多项式计算即可。这部分的目的是为了验证该轨迹是安全的,即不发生碰撞,速度、加速度不超限。
bool KinodynamicAstar::computeShotTraj(Eigen::VectorXd state1, Eigen::VectorXd state2, double time_to_goal)
{
  /* ---------- get coefficient ---------- */
  const Vector3d p0 = state1.head(3);
  const Vector3d dp = state2.head(3) - p0;
  const Vector3d v0 = state1.segment(3, 3);
  const Vector3d v1 = state2.segment(3, 3);
  const Vector3d dv = v1 - v0;
  double t_d = time_to_goal;
  MatrixXd coef(3, 4);
  end_vel_ = v1;

  Vector3d a = 1.0 / 6.0 * (-12.0 / (t_d * t_d * t_d) * (dp - v0 * t_d) + 6 / (t_d * t_d) * dv);
  Vector3d b = 0.5 * (6.0 / (t_d * t_d) * (dp - v0 * t_d) - 2 / t_d * dv);
  Vector3d c = v0;
  Vector3d d = p0;

  // 1/6 * alpha * t^3 + 1/2 * beta * t^2 + v0
  // a*t^3 + b*t^2 + v0*t + p0
  coef.col(3) = a, coef.col(2) = b, coef.col(1) = c, coef.col(0) = d;

  Vector3d coord, vel, acc;
  VectorXd poly1d, t, polyv, polya;
  Vector3i index;

  Eigen::MatrixXd Tm(4, 4);
  Tm << 0, 1, 0, 0, 0, 0, 2, 0, 0, 0, 0, 3, 0, 0, 0, 0;

  /* ---------- forward checking of trajectory ---------- */
  double t_delta = t_d / 10;
  for (double time = t_delta; time <= t_d; time += t_delta)
  {
    t = VectorXd::Zero(4);
    for (int j = 0; j < 4; j++)
      t(j) = pow(time, j);

    for (int dim = 0; dim < 3; dim++)
    {
      poly1d = coef.row(dim);
      coord(dim) = poly1d.dot(t);
      vel(dim) = (Tm * poly1d).dot(t);
      acc(dim) = (Tm * Tm * poly1d).dot(t);

      if (fabs(vel(dim)) > max_vel_ || fabs(acc(dim)) > max_acc_)
      {
        // cout << "vel:" << vel(dim) << ", acc:" << acc(dim) << endl;
        // return false;
      }
    }

    if (coord(0) < origin_(0) || coord(0) >= map_size_3d_(0) || coord(1) < origin_(1) || coord(1) >= map_size_3d_(1) ||
        coord(2) < origin_(2) || coord(2) >= map_size_3d_(2))
    {
      return false;
    }

    // if (edt_environment_->evaluateCoarseEDT(coord, -1.0) <= margin_) {
    //   return false;
    // }
    if (edt_environment_->sdf_map_->getInflateOccupancy(coord) == 1)
    {
      return false;
    }
  }
  coef_shot_ = coef;
  t_shot_ = t_d;
  is_shot_succ_ = true;
  return true;
}

二、后端优化

2.1 离散采样,获取一些轨迹点和速度、加速度。
void KinodynamicAstar::getSamples(double& ts, vector<Eigen::Vector3d>& point_set,
                                  vector<Eigen::Vector3d>& start_end_derivatives)
{
  /* ---------- path duration ---------- */
  double T_sum = 0.0;
  if (is_shot_succ_)
    T_sum += t_shot_;
  PathNodePtr node = path_nodes_.back();
  while (node->parent != NULL)
  {
    T_sum += node->duration;
    node = node->parent;
  }
  // cout << "duration:" << T_sum << endl;

  // Calculate boundary vel and acc
  Eigen::Vector3d end_vel, end_acc;
  double t;
  if (is_shot_succ_)
  {
    t = t_shot_;
    end_vel = end_vel_;
    for (int dim = 0; dim < 3; ++dim)
    {
      Vector4d coe = coef_shot_.row(dim);
      end_acc(dim) = 2 * coe(2) + 6 * coe(3) * t_shot_;
    }
  }
  else
  {
    t = path_nodes_.back()->duration;
    end_vel = node->state.tail(3);
    end_acc = path_nodes_.back()->input;
  }

  // Get point samples
  int seg_num = floor(T_sum / ts);
  seg_num = max(8, seg_num);
  ts = T_sum / double(seg_num);
  bool sample_shot_traj = is_shot_succ_;
  node = path_nodes_.back();

  for (double ti = T_sum; ti > -1e-5; ti -= ts)
  {
    if (sample_shot_traj)
    {
      // samples on shot traj
      Vector3d coord;
      Vector4d poly1d, time;

      for (int j = 0; j < 4; j++)
        time(j) = pow(t, j);

      for (int dim = 0; dim < 3; dim++)
      {
        poly1d = coef_shot_.row(dim);
        coord(dim) = poly1d.dot(time);
      }

      point_set.push_back(coord);
      t -= ts;

      /* end of segment */
      if (t < -1e-5)
      {
        sample_shot_traj = false;
        if (node->parent != NULL)
          t += node->duration;
      }
    }
    else
    {
      // samples on searched traj
      Eigen::Matrix<double, 6, 1> x0 = node->parent->state;
      Eigen::Matrix<double, 6, 1> xt;
      Vector3d ut = node->input;

      stateTransit(x0, xt, ut, t);

      point_set.push_back(xt.head(3));
      t -= ts;

      // cout << "t: " << t << ", t acc: " << T_accumulate << endl;
      if (t < -1e-5 && node->parent->parent != NULL)
      {
        node = node->parent;
        t += node->duration;
      }
    }
  }
  reverse(point_set.begin(), point_set.end());

  // calculate start acc
  Eigen::Vector3d start_acc;
  if (path_nodes_.back()->parent == NULL)
  {
    // no searched traj, calculate by shot traj
    start_acc = 2 * coef_shot_.col(2);
  }
  else
  {
    // input of searched traj
    start_acc = node->input;
  }

  start_end_derivatives.push_back(start_vel_);
  start_end_derivatives.push_back(end_vel);
  start_end_derivatives.push_back(start_acc);
  start_end_derivatives.push_back(end_acc);
}
2.2 前端离散点拟合成B样条曲线

每获得一个轨迹点就认为是一段?就有多少个控制点?这样控制点有点多啊

void NonUniformBspline::parameterizeToBspline(const double& ts, const vector<Eigen::Vector3d>& point_set,
                                              const vector<Eigen::Vector3d>& start_end_derivative,
                                              Eigen::MatrixXd&               ctrl_pts) {
  if (ts <= 0) {
    cout << "[B-spline]:time step error." << endl;
    return;
  }

  if (point_set.size() < 2) {
    cout << "[B-spline]:point set have only " << point_set.size() << " points." << endl;
    return;
  }

  if (start_end_derivative.size() != 4) {
    cout << "[B-spline]:derivatives error." << endl;
  }

  int K = point_set.size();

  // write A
  Eigen::Vector3d prow(3), vrow(3), arow(3);
  prow << 1, 4, 1;
  vrow << -1, 0, 1;
  arow << 1, -2, 1;

  Eigen::MatrixXd A = Eigen::MatrixXd::Zero(K + 4, K + 2);

  for (int i = 0; i < K; ++i) A.block(i, i, 1, 3) = (1 / 6.0) * prow.transpose();

  A.block(K, 0, 1, 3)         = (1 / 2.0 / ts) * vrow.transpose();
  A.block(K + 1, K - 1, 1, 3) = (1 / 2.0 / ts) * vrow.transpose();

  A.block(K + 2, 0, 1, 3)     = (1 / ts / ts) * arow.transpose();
  A.block(K + 3, K - 1, 1, 3) = (1 / ts / ts) * arow.transpose();
  // cout << "A:\n" << A << endl;

  // A.block(0, 0, K, K + 2) = (1 / 6.0) * A.block(0, 0, K, K + 2);
  // A.block(K, 0, 2, K + 2) = (1 / 2.0 / ts) * A.block(K, 0, 2, K + 2);
  // A.row(K + 4) = (1 / ts / ts) * A.row(K + 4);
  // A.row(K + 5) = (1 / ts / ts) * A.row(K + 5);

  // write b
  Eigen::VectorXd bx(K + 4), by(K + 4), bz(K + 4);
  for (int i = 0; i < K; ++i) {
    bx(i) = point_set[i](0);
    by(i) = point_set[i](1);
    bz(i) = point_set[i](2);
  }

  for (int i = 0; i < 4; ++i) {
    bx(K + i) = start_end_derivative[i](0);
    by(K + i) = start_end_derivative[i](1);
    bz(K + i) = start_end_derivative[i](2);
  }

  // solve Ax = b
  Eigen::VectorXd px = A.colPivHouseholderQr().solve(bx);
  Eigen::VectorXd py = A.colPivHouseholderQr().solve(by);
  Eigen::VectorXd pz = A.colPivHouseholderQr().solve(bz);

  // convert to control pts
  ctrl_pts.resize(K + 2, 3);
  ctrl_pts.col(0) = px;
  ctrl_pts.col(1) = py;
  ctrl_pts.col(2) = pz;

  // cout << "[B-spline]: parameterization ok." << endl;
}

虽然在计算B样条曲线上某一点的值时论文用的是DeBoor公式,但是在使用均匀B样条对前端路径进行拟合时用的是B样条的矩阵表达方法,具体参见论文:K. Qin, “General matrix representations for b-splines,” The Visual Computer, vol. 16, no. 3, pp. 177–186, 2000.

2.3 B样条优化
Eigen::MatrixXd BsplineOptimizer::BsplineOptimizeTraj(const Eigen::MatrixXd& points, const double& ts,
                                                      const int& cost_function, int max_num_id,
                                                      int max_time_id) {
  setControlPoints(points);
  setBsplineInterval(ts);
  setCostFunction(cost_function);
  setTerminateCond(max_num_id, max_time_id);

  optimize();
  return this->control_points_;
}

void BsplineOptimizer::optimize() {
  /* initialize solver */
  iter_num_        = 0;
  min_cost_        = std::numeric_limits<double>::max();
  const int pt_num = control_points_.rows();
  g_q_.resize(pt_num);
  g_smoothness_.resize(pt_num);
  g_distance_.resize(pt_num);
  g_feasibility_.resize(pt_num);
  g_endpoint_.resize(pt_num);
  g_waypoints_.resize(pt_num);
  g_guide_.resize(pt_num);

  if (cost_function_ & ENDPOINT) {
    variable_num_ = dim_ * (pt_num - order_);
    // end position used for hard constraint
    end_pt_ = (1 / 6.0) *
        (control_points_.row(pt_num - 3) + 4 * control_points_.row(pt_num - 2) +
         control_points_.row(pt_num - 1));
  } else {
    variable_num_ = max(0, dim_ * (pt_num - 2 * order_)) ;
  }

  /* do optimization using NLopt slover */
  nlopt::opt opt(nlopt::algorithm(isQuadratic() ? algorithm1_ : algorithm2_), variable_num_);
  opt.set_min_objective(BsplineOptimizer::costFunction, this);//设置优化函数
  opt.set_maxeval(max_iteration_num_[max_num_id_]);//优化最大次数
  opt.set_maxtime(max_iteration_time_[max_time_id_]);//优化最大时间
  opt.set_xtol_rel(1e-5);//最后停止阈值

  vector<double> q(variable_num_);
  for (int i = order_; i < pt_num; ++i) {
    if (!(cost_function_ & ENDPOINT) && i >= pt_num - order_) continue;
    for (int j = 0; j < dim_; j++) {
      q[dim_ * (i - order_) + j] = control_points_(i, j);
    }
  }

  if (dim_ != 1) {
    vector<double> lb(variable_num_), ub(variable_num_);
    const double   bound = 10.0;
    for (int i = 0; i < variable_num_; ++i) {
      lb[i] = q[i] - bound;
      ub[i] = q[i] + bound;
    }
    opt.set_lower_bounds(lb);//设置下限
    opt.set_upper_bounds(ub);//设置上限
  }

  try {
    // cout << fixed << setprecision(7);
    // vec_time_.clear();
    // vec_cost_.clear();
    // time_start_ = ros::Time::now();

    double        final_cost;
    nlopt::result result = opt.optimize(q, final_cost);

    /* retrieve the optimization result */
    // cout << "Min cost:" << min_cost_ << endl;
  } catch (std::exception& e) {
    ROS_WARN("[Optimization]: nlopt exception");
    cout << e.what() << endl;
  }

  for (int i = order_; i < control_points_.rows(); ++i) {
    if (!(cost_function_ & ENDPOINT) && i >= pt_num - order_) continue;
    for (int j = 0; j < dim_; j++) {
      control_points_(i, j) = best_variable_[dim_ * (i - order_) + j];
    }
  }

  if (!(cost_function_ & GUIDE)) ROS_INFO_STREAM("iter num: " << iter_num_);
}
2.4 cost设计

2.4.1 平滑度cost:
三次B样条公式为:
$p(t) = p_{0} * F_{0,3}(t) + p_{1} * F_{1,3}(t) + p_{2} * F_{2,3}(t) + p_{3} * F_{3,3}(t) $image
jerk就是对p(t)求三次导,这时会发现是一个常数,将每一段的jerk平方加起来,就得到cost。
梯度的求法:cost对控制点的求导。运用链式求导法则。
转变为cost对jerk的求导 * jerk对控制点的求导。

void BsplineOptimizer::calcSmoothnessCost(const vector<Eigen::Vector3d>& q, double& cost,
                                          vector<Eigen::Vector3d>& gradient) {
  cost = 0.0;
  Eigen::Vector3d zero(0, 0, 0);
  std::fill(gradient.begin(), gradient.end(), zero);
  Eigen::Vector3d jerk, temp_j;

  for (int i = 0; i < q.size() - order_; i++) {
    /* evaluate jerk */
    jerk = q[i + 3] - 3 * q[i + 2] + 3 * q[i + 1] - q[i];
    cost += jerk.squaredNorm();
    temp_j = 2.0 * jerk;
    /* jerk gradient */
    gradient[i + 0] += -temp_j;
    gradient[i + 1] += 3.0 * temp_j;
    gradient[i + 2] += -3.0 * temp_j;
    gradient[i + 3] += temp_j;
  }
}

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.coloradmin.cn/o/354196.html

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈,一经查实,立即删除!

相关文章

DPDK — Userspace PMD 源码分析

目录 文章目录目录PMD driver 通过 IGB_UIO 与 UIO 进行交互注册一个 UIO 设备PMD 的应用层实现PMD 同样支持中断处理方式PMD driver 通过 IGB_UIO 与 UIO 进行交互 IGB_UIO 内核模块的另一个主要功能就是让用于态的 PMD 网卡驱动程序得以与 UIO 进行交互。对于 PMD 的实现来说…

松下PLC通过fpwin上传写入MRTC模块方法

目录 PLC程序上传方法 加密模块使用 PLC程序上传方法 手动将PLC模式设置为prog模式查看PLC是否设置为禁止上传查询指示灯是否变蓝&#xff0c;变蓝则需要将PLC禁止上传功能取消。 3.当上述动作操作完成后&#xff0c;将PLC程序导入到PLC中。为了配合加密程序使用&#xff0c;…

进程通信方式

无名管道( pipe )&#xff1a; 管道是一种半双工的通信方式&#xff0c;数据只能单向流动&#xff0c;而且只能在具有亲缘关系的进程间使用。进程的亲缘关系通常是指父子进程关系。高级管道&#xff08;popen&#xff09;&#xff1a; 将另一个程序当做一个新的进程在当前程序进…

主成分分析(PCA)原理详解

1. 相关背景 在许多领域的研究与应用中&#xff0c;通常需要对含有多个变量的数据进行观测&#xff0c;收集大量数据后进行分析寻找规律。多变量大数据集无疑会为研究和应用提供丰富的信息&#xff0c;但是也在一定程度上增加了数据采集的工作量。更重要的是在很多情形下&…

Windows server——部署web服务

作者简介&#xff1a;一名云计算网络运维人员、每天分享网络与运维的技术与干货。 座右铭&#xff1a;低头赶路&#xff0c;敬事如仪 个人主页&#xff1a;网络豆的主页​​​​​​ 目录 前言 本章重点 一.web讲解 1.WWW概述 &#xff08;1&#xff09;WWW服务概述 &…

Linux应用编程下连接本地数据库进行增删改查系列操作

文章目录前言一、常用SQL操作语句二、相关函数解析三、连接本地数据库四、编译运行五、程序源码前言 本篇为C语言应用编程下连接Linux本地数据库进行增删改查系列操作。 在此之前&#xff0c;首先当然是你需要具备一定的数据库基础&#xff0c;所以下面我先列出部分常用的SQL…

如何利用文件上传漏洞-以及如何修复它们

目录什么是文件上传漏洞&#xff1f;文件上传请求如何工作为什么文件上传漏洞是个问题&#xff1f;漏洞 #1&#xff1a;通过文件内容远程代码执行&#xff08;Web Shell 上传&#xff09;绕过黑名单保护案例 1&#xff1a;案例 2&#xff1a;案例 3&#xff1a;案例 4&#xff…

【Spark分布式内存计算框架——Spark SQL】10. External DataSource(上)数据源与格式

第六章 External DataSource 在SparkSQL模块&#xff0c;提供一套完成API接口&#xff0c;用于方便读写外部数据源的的数据&#xff08;从Spark 1.4版本提供&#xff09;&#xff0c;框架本身内置外部数据源&#xff1a; 在Spark 2.4版本中添加支持Image Source&#xff08;图…

音频信号处理笔记(一)

相关课程&#xff1a;【音频信号处理及深度学习教程】 文章目录01 信号的时域分析1.1 分帧1.1.1 幅值包络1.1.2 均方根能量0 信号的叠加&#xff1a;https://teropa.info/harmonics-explorer/ 一个复杂信号分解成若干简单信号分量之和。不同个频率信号的叠加: 由于和差化积&a…

【Mysql基础 —— SQL语句(一)】

文章目录概述使用启动/停止mysql服务连接mysql客户端数据模型SQLSQL语句分类DDL数据库操作表操作查询创建数据类型修改删除DML添加数据修改数据删除数据DQL基础查询条件查询聚合函数分组查询排序查询分页查询执行顺序DCL管理用户权限控制概述 数据库&#xff08;Database&#…

如何评价一个新技术——以 ChatGPT 为例

开源社KAIYUANSHE近期微信公众号订阅功能做调整啦&#xff01;没有被星标的账号在信息流里可能不显示大图了&#xff01;快星标⭐我们&#xff0c;就可以及时看到发布的文章啦&#xff01;STEP01 点击右上角标志STEP02 点击【设为星标】缘起2015 年的时候&#xff0c;我写过一篇…

DaVinci 偏好设置:用户 - UI 设置

偏好设置 - 用户/ UI 设置Preferences - User/ UI Settings工作区选项Workspace Options语言Language指定 DaVinci Resolve 软件界面所使用的语言。目前支持英语、简体中文、日语、西班牙语、葡萄牙语、法语、俄语、泰语和越南语等等。启动时重新加载上一个工作项目Reload last…

Python 连接数据源与邮件功能(九)

文章目录一、概述二、Python 连接数据源1&#xff09;Python MySQL 基础操作1、部署MySQL2、MySQL Connector 库【1】安装 mysql-connector-python 库【2】连接 MySQL【3】增加数据【4】查询数据【5】更新数据【6】删除数据2、PyMySQL 库【1】安装 PyMySQL 库【2】连接 MySQL【…

2023年数学建模美赛D题(Prioritizing the UN Sustainability Goals):SDGs 优先事项的选择

正在写&#xff0c;不断更新&#xff0c;别着急。。。 4. SDGs 优先事项的选择 4.1 基于SDG密度分布图选择优先事项 虽然每个可持续发展目标的接近度矩阵和中心性度量的结果是通用的&#xff0c;并创建了基本的可持续发展目标网络&#xff0c;但由于各国在网络的不同部分取得…

前端网格布局grid

网格布局 <style> .container {border:none;display: grid;height: 600px;grid-template-columns: 200px 1fr; /*两列&#xff0c;第一列200px&#xff0c;第二列自适应*/grid-template-rows: 50px 1fr 30px; /*三行&#xff1a;第一行&#xff1a;50px,第二行&#…

【C语言每日一题】——猜名次

【C语言每日一题】——猜名次&#x1f60e;前言&#x1f64c;猜名次&#x1f64c;解题思路分享&#xff1a;&#x1f60d;解题源码分享&#xff1a;&#x1f60d;总结撒花&#x1f49e;&#x1f60e;博客昵称&#xff1a;博客小梦 &#x1f60a;最喜欢的座右铭&#xff1a;全神…

大数据之-Nifi-应用场景2-2_设置putfile处理器自动创建目标文件夹_以及存在重复文件时自动覆盖---大数据之Nifi工作笔记0006

上一节我们留了两个问题,一个是,如果我们没有创建putfile要写入的目标文件夹,会报错吗? 可以看到我们putfile目标文件夹是上面这个目录 我们来试一试,如果目标文件夹不存在,putfile处理器会自动创建吗 首先我们删除这个target目标文件夹 然后我们进入cd source目录,源文件夹目…

echart在微信小程序的使用

echart在微信小程序的使用 echarts不显示在微信小程序 <!-- 微信小程序的echart的使用 --> <view class"container"><ec-canvas id"mychart-dom-bar" canvas-id"mychart-bar" ec"{{ ec }}"></ec-canvas> &l…

SVNH数据(.mat格式)转为图像(.png)matlab代码

一、获取SVNH数据数据集集地址-http://ufldl.stanford.edu/housenumbers/提供两种格式的数据&#xff1a;1.Format 1&#xff0c;图像形式&#xff0c;压缩包2.Format 2&#xff0c; .mat格式的数据10 classes, 1 for each digit. Digit 1 has label 1, 9 has label 9 and 0 ha…

Git在日常使用过程中的常用命令

文章目录Git在日常使用过程中的常用命令写在前面1. 创建本地仓库2. 将本地文件添加到暂存区3. 将本地文件从暂存区撤销4. 将修改提交到本地仓库5. clone远程版本库到本地。6. 为本地版本库添加一个远程仓库7. 推送到远程仓库8. 将远程分支内容拉取到本地Git在日常使用过程中的常…