LeetCode 105. 从前序与中序遍历序列构造二叉树 -- 数据结构基础

news2025/1/24 11:01:37
  1. 从前序与中序遍历序列构造二叉树
    中等
    1.9K
    相关企业
    给定两个整数数组 preorder 和 inorder ,其中 preorder 是二叉树的先序遍历, inorder 是同一棵树的中序遍历,请构造二叉树并返回其根节点。

示例 1:
在这里插入图片描述

输入: preorder = [3,9,20,15,7], inorder = [9,3,15,20,7]
输出: [3,9,20,null,null,15,7]
示例 2:

输入: preorder = [-1], inorder = [-1]
输出: [-1]

提示:

1 <= preorder.length <= 3000
inorder.length == preorder.length
-3000 <= preorder[i], inorder[i] <= 3000
preorder 和 inorder 均 无重复 元素
inorder 均出现在 preorder
preorder 保证 为二叉树的前序遍历序列
inorder 保证 为二叉树的中序遍历序列

题解

简单的数据结构基础题目。

AC代码

/**
 * Definition for a binary tree node.
 * struct TreeNode {
 *     int val;
 *     TreeNode *left;
 *     TreeNode *right;
 *     TreeNode() : val(0), left(nullptr), right(nullptr) {}
 *     TreeNode(int x) : val(x), left(nullptr), right(nullptr) {}
 *     TreeNode(int x, TreeNode *left, TreeNode *right) : val(x), left(left), right(right) {}
 * };
 */
class Solution {
public:
    TreeNode* build(vector<int> preorder, vector<int> inorder)
    {
        if(preorder.size()==0)return nullptr;
        vector<int>left_pre,left_in;
        vector<int>right_pre,right_in;
        int index = -1;
        for(int i=0;i<inorder.size();i++)
        {
            if(inorder[i]==preorder[0])
            {
                index = i;
                break;
            }
        }
        for(int i=0;i<index;i++)
        {
            left_pre.push_back(preorder[i+1]);
            left_in.push_back(inorder[i]);
        }
        for(int i=index+1;i<preorder.size();i++)
        {
            right_pre.push_back(preorder[i]);
            right_in.push_back(inorder[i]);
        }
        TreeNode* root = new(TreeNode);
        root->val = preorder[0];
        root->left = build(left_pre, left_in);
        root->right = build(right_pre, right_in);
        return root;
    }
    TreeNode* buildTree(vector<int>& preorder, vector<int>& inorder) 
    {
        return build(preorder, inorder);
    }
};

在这里插入图片描述

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.coloradmin.cn/o/346595.html

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈,一经查实,立即删除!

相关文章

基于MATLAB的MIMO信道估计(附完整代码与分析)

目录 一. 介绍 二. MATLAB代码 三. 运行结果与分析 一. 介绍 本篇将在MATLAB的仿真环境中对比MIMO几种常见的信道估计方法的性能。 有关MIMO的介绍可看转至此篇博客&#xff1a; MIMO系统模型构建_唠嗑&#xff01;的博客-CSDN博客 在所有无线通信中&#xff0c;信号通过…

05- 线性回归算法 (LinearRegression) (算法)

线性回归算法(LinearRegression)就是假定一个数据集合预测值与实际值存在一定的误差, 然后假定所有的这些误差值符合正太分布, 通过方程求这个正太分布的最小均值和方差来还原原数据集合的斜率和截距。当误差值无限接近于0时, 预测值与实际值一致, 就变成了求误差的极小值。 fr…

【Calcite源码学习】ImmutableBitSet介绍

Calcite中实现了一个ImmutableBitSet类&#xff0c;用于保存bit集合。在很多优化规则和物化视图相关的类中都使用了ImmutableBitSet来保存group by字段或者聚合函数参数字段对应的index&#xff0c;例如&#xff1a; //MaterializedViewAggregateRule#compensateViewPartial()…

浏览器渲染原理JavaScript V8引擎

浏览器渲染原理 前言 在我们面试过程中&#xff0c;面试官经常会问到这么一个问题&#xff0c;那就是从在浏览器地址栏中输入URL到页面显示&#xff0c;浏览器到底发生了什么&#xff1f; 浏览器内有哪些进程&#xff0c;这些进程都有些什么作用&#xff1b;浏览器地址输入U…

【CentOS】有关时间的设置

目录环境信息date语法信息查看时间设置时间设置日期tzselecttimedatectl语法显示当前及所有时区修改时区hwclock语法读取硬件时钟使用硬件时钟设置系统时间使用系统时间设置硬件时钟如何理解硬件时钟和系统时钟环境信息 CentOS 7 date 语法信息 date --help用法&#xff1a…

Android - dimen适配

一、分辨率对应DPIDPI名称范围值分辨率名称屏幕分辨率density密度&#xff08;1dp显示多少px&#xff09;ldpi120QVGA240*3200.75&#xff08;120dpi/1600.75px&#xff09;mdpi160&#xff08;基线&#xff09;HVGA320*4801&#xff08;160dpi/1601px&#xff09;hdpi240WVGA4…

小白系列Vite-Vue3-TypeScript:011-登录界面搭建及动态路由配置

前面几篇文章我们介绍的都是ViteVue3TypeScript项目中环境相关的配置&#xff0c;接下来我们开始进入系统搭建部分。本篇我们来介绍登录界面搭建及动态路由配置&#xff0c;大家一起撸起来......搭建登录界面登陆接口api项目登陆接口是通过mockjs前端来模拟的模拟服务接口Login…

OpenStack手动分布式部署环境准备【Queens版】

目录 1.基础环境准备&#xff08;两个节点都需要部署&#xff09; 1.1关闭防火墙 1.2关闭selinux 1.3修改主机名 1.4安装ntp时间服务器 1.5修改域名解析 1.6添加yum源 2.数据库安装配置 2.1安装数据库 2.2修改数据库 2.3重启数据库 2.4初始化数据库 3.安装RabbitMq…

html网页加载ppt文件非ifram加载

今天有一个客户需求是加载一个ppt文件还要有翻页的效果&#xff0c;我搜索了很久也只有一个ifram加载。 所以我果断用了chtgpt然后发现了一个宝藏效果 代码如下&#xff1a; <!DOCTYPE html> <html> <head><title>PPT预览</title> </head>…

Seata-Server分布式事务原理加源码 (六) - Seata的AT模式

Seata-AT模式 概念&#xff1a;AT模式是一种无侵入的分布式事务解决方案&#xff0c;在 AT 模式下&#xff0c;用户只需关注自己的“业务 SQL”&#xff0c;用户的 “业务 SQL” 作为一阶段&#xff0c;Seata 框架会自动生成事务的二阶段提交和回滚操作。 整体机制 两阶段提…

Linux——线程同步(条件变量、POSIX信号量)和线程池

一.线程同步&#xff08;一&#xff09;.概念线程同步是一种多线程关系&#xff0c;指的是线程之间按照特定顺序访问临界资源&#xff0c;进而能够避免线程饥饿问题。所谓线程饥饿指的是某个线程长期“霸占”临界资源&#xff0c;导致其他线程无法访问该资源。而通过线程同步机…

【FPGA】Verilog:组合电路设计 | 三输入 | 多数表决器

前言&#xff1a;本章内容主要是演示Vivado下利用Verilog语言进行电路设计、仿真、综合和下载的示例&#xff1a;表决器&#xff08;三人表决器&#xff09;。 功能特性&#xff1a; 采用 Xilinx Artix-7 XC7A35T芯片 配置方式&#xff1a;USB-JTAG/SPI Flash 高达100MHz 的内部…

你是真的“C”——【经典面试知识点】数据在内存中的大小端存储方式

你是真的“C”——【经典面试知识点】数据在内存中的大小端存储方式&#x1f60e;前言&#x1f64c;大小端介绍&#x1f64c;什么大端小端呢&#xff1f;&#xff1a;大小端存储的标准定义&#xff1a;大端和小端存在的意义经典的面试题目&#x1f64c;总结撒花&#x1f49e;&a…

ICLR 2022—你不应该错过的 10 篇论文(上)

CV - 计算机视觉 | ML - 机器学习 | RL - 强化学习 | NLP 自然语言处理 ICLR 2023已经放榜&#xff0c;但是今天我们先来回顾一下去年的ICLR 2022&#xff01; ICLR 2022将于2022年 4 月 25 日星期一至 4 月 29 日星期五在线举行&#xff08;连续第三年&#xff01;&#xf…

1.8配置OSPF特殊区域

1.4.3实验8:配置OSPF特殊区域 实验目的实现OSPF Stub区域的配置实现OSPF NSSA区域的配置描述Type-7 LSA的内容描述Type-7 LSA与Type-5 LSA之间的转换过程实验拓扑配置OSPF特殊区域实验拓扑如图1-18的所示:[1] 图1-18 配置OSPF特殊区域 实验步骤 配置I…

有趣的HTML实例(十一) 烟花特效(css+js)

为什么今天不做炒土豆丝呢&#xff0c;为什么呢为什么呢为什么呢为什么呢&#xff0c;坚持问上一个时辰&#xff0c;一般来说&#xff0c;第二天我们的饭桌上就会出现炒土豆丝。这件事告诉了我们求知欲的重要性&#xff0c;知之才幸福&#xff0c;不知不幸福。 ——《华胥引》 …

ch4_1存储器

1. 存储器的类型 1.1 按照存储介质来分类 半导体存储器&#xff1a; TTL&#xff0c; MOS 易失性 磁表面存储器&#xff1a; 磁头&#xff0c; 载磁体&#xff1b; 磁芯存储器&#xff1a; 硬磁材料&#xff0c; 环状元件 光盘存储器: 激光&#xff0c; 磁光材料; 1.2 按…

【SSL/TLS】准备工作:证书格式

证书格式1. 格式说明1.1 文件编码格式1.2 文件后缀格式2. xca导出格式1. 格式说明 1.1 文件编码格式 1. PEM格式: 使用Base 64 ASCII进行编码的纯文本格式。后缀为“.pem”, ".cer", ".crt", ".key" 2. DER格式 二进制编码格式&#xff0c;文件…

Day889.MySQL高可用 -MySQL实战

MySQL高可用 Hi&#xff0c;我是阿昌&#xff0c;今天学习记录的是关于MySQL高可用的内容。 正常情况下&#xff0c;只要主库执行更新生成的所有 binlog&#xff0c;都可以传到备库并被正确地执行&#xff0c;备库就能达到跟主库一致的状态&#xff0c;这就是最终一致性。但是…

喜茶、奈雪的茶“花式”寻生路

配图来自Canva可画 疫情全面开放不少人“阳了又阳”&#xff0c;电解质饮品成为热销品&#xff0c;梨子、橘子、柠檬等水果被卖断货&#xff0c;凉茶、黄桃罐头被抢购一空&#xff0c;喜茶的“多肉大橘”、奈雪的“霸气银耳炖梨”、蜜雪冰城的“棒打鲜橙”、沪上阿姨的“鲜炖整…