1.概念
在多线程实时系统中,一项工作的完成往往可以通过多个线程协调的方式共同来完成,那么多个线程之间如何 “默契” 协作才能使这项工作无差错执行?下面举个例子说明。
例如一项工作中的两个线程:一个线程从传感器中接收数据并且将数据写到共享内存中,同时另一个线程周期性的从共享内存中读取数据并发送去显示,下图描述了两个线程间的数据传递:
如果对共享内存的访问不是排他性的,那么各个线程间可能同时访问它,这将引起数据一致性的问题。例如,在显示线程试图显示数据之前,接收线程还未完成数据的写入,那么显示将包含不同时间采样的数据,造成显示数据的错乱。
将传感器数据写入到共享内存块的接收线程 #1 和将传感器数据从共享内存块中读出的线程 #2 都会访问同一块内存。为了防止出现数据的差错,两个线程访问的动作必须是互斥进行的,应该是在一个线程对共享内存块操作完成后,才允许另一个线程去操作,这样,接收线程 #1 与显示线程 #2 才能正常配合,使此项工作正确地执行。
同步是指按预定的先后次序进行运行,线程同步是指多个线程通过特定的机制(如互斥量,事件对象,临界区)来控制线程之间的执行顺序,也可以说是在线程之间通过同步建立起执行顺序的关系,如果没有同步,那线程之间将是无序的。
多个线程操作 / 访问同一块区域(代码),这块代码就称为临界区,上述例子中的共享内存块就是临界区。线程互斥是指对于临界区资源访问的排它性。当多个线程都要使用临界区资源时,任何时刻最多只允许一个线程去使用,其它要使用该资源的线程必须等待,直到占用资源者释放该资源。线程互斥可以看成是一种特殊的线程同步。
线程的同步方式有很多种,其核心思想都是:在访问临界区的时候只允许一个 (或一类) 线程运行。进入 / 退出临界区的方式有很多种:
1)调用 rt_hw_interrupt_disable() 进入临界区,调用 rt_hw_interrupt_enable() 退出临界区;详见《中断管理》的全局中断开关内容。
2)调用 rt_enter_critical() 进入临界区,调用 rt_exit_critical() 退出临界区。
本章将介绍多种同步方式:信号量(semaphore)、互斥量(mutex)、和事件集(event)。学习完本章,大家将学会如何使用信号量、互斥量、事件集这些对象进行线程间的同步。
2.类型
2.1信号量
2.1.1 以生活中的停车场为例来理解信号量的概念:
①当停车场空的时候,停车场的管理员发现有很多空车位,此时会让外面的车陆续进入停车场获得停车位;
②当停车场的车位满的时候,管理员发现已经没有空车位,将禁止外面的车进入停车场,车辆在外排队等候;
③当停车场内有车离开时,管理员发现有空的车位让出,允许外面的车进入停车场;待空车位填满后,又禁止外部车辆进入。
在此例子中,管理员就相当于信号量,管理员手中空车位的个数就是信号量的值(非负数,动态变化);停车位相当于公共资源(临界区),车辆相当于线程。车辆通过获得管理员的允许取得停车位,就类似于线程通过获得信号量访问公共资源。
2.1.2 概念
信号量是一种轻型的用于解决线程间同步问题的内核对象,线程可以获取或释放它,从而达到同步或互斥的目的。
信号量工作示意图如下图所示,每个信号量对象都有一个信号量值和一个线程等待队列,信号量的值对应了信号量对象的实例数目、资源数目,假如信号量值为 5,则表示共有 5 个信号量实例(资源)可以被使用,当信号量实例数目为零时,再申请该信号量的线程就会被挂起在该信号量的等待队列上,等待可用的信号量实例(资源)。
信号量控制块
在 RT-Thread 中,信号量控制块是操作系统用于管理信号量的一个数据结构,由结构体 struct rt_semaphore 表示。另外一种 C 表达方式 rt_sem_t,表示的是信号量的句柄,在 C 语言中的实现是指向信号量控制块的指针。信号量控制块结构的详细定义如下:
struct rt_semaphore
{
struct rt_ipc_object parent; /* 继承自 ipc_object 类 */
rt_uint16_t value; /* 信号量的值 */
};
/* rt_sem_t 是指向 semaphore 结构体的指针类型 */
typedef struct rt_semaphore* rt_sem_t;
rt_semaphore 对象从 rt_ipc_object 中派生,由 IPC 容器所管理,信号量的最大值是 65535。
2.1.3 信号量的管理方式
信号量控制块中含有信号量相关的重要参数,在信号量各种状态间起到纽带的作用。信号量相关接口如下图所示,对一个信号量的操作包含:创建 / 初始化信号量、获取信号量、释放信号量、删除 / 脱离信号量。
创建和删除信号量(动态)
(名字 值 线程 )
当创建一个信号量时,内核首先创建一个信号量控制块,然后对该控制块进行基本的初始化工作,创建信号量使用下面的函数接口:
rt_sem_t rt_sem_create(const char *name,
rt_uint32_t value,
rt_uint8_t flag);
当调用这个函数时,系统将先从对象管理器中分配一个 semaphore 对象,并初始化这个对象,然后初始化父类 IPC 对象以及与 semaphore 相关的部分。在创建信号量指定的参数中,信号量标志参数决定了当信号量不可用时,多个线程等待的排队方式。当选择 RT_IPC_FLAG_FIFO(先进先出)方式时,那么等待线程队列将按照先进先出的方式排队,先进入的线程将先获得等待的信号量;当选择 RT_IPC_FLAG_PRIO(优先级等待)方式时,等待线程队列将按照优先级进行排队,优先级高的等待线程将先获得等待的信号量。
注:RT_IPC_FLAG_FIFO 属于非实时调度方式,除非应用程序非常在意先来后到,并且你清楚地明白所有涉及到该信号量的线程都将会变为非实时线程,方可使用 RT_IPC_FLAG_FIFO,否则建议采用 RT_IPC_FLAG_PRIO,即确保线程的实时性。
下表描述了该函数的输入参数与返回值:
参数 | 描述 |
---|---|
name | 信号量名称 |
value | 信号量初始值 |
flag | 信号量标志,它可以取如下数值: RT_IPC_FLAG_FIFO 或 RT_IPC_FLAG_PRIO |
返回 | —— |
RT_NULL | 创建失败 |
信号量的控制块指针 | 创建成功 |
系统不再使用信号量时,可通过删除信号量以释放系统资源,适用于动态创建的信号量。删除信号量使用下面的函数接口:
rt_err_t rt_sem_delete(rt_sem_t sem);
调用这个函数时,系统将删除这个信号量。如果删除该信号量时,有线程正在等待该信号量,那么删除操作会先唤醒等待在该信号量上的线程(等待线程的返回值是 - RT_ERROR),然后再释放信号量的内存资源。下表描述了该函数的输入参数与返回值:
参数 | 描述 |
---|---|
sem | rt_sem_create() 创建的信号量对象 |
返回 | —— |
RT_EOK | 删除成功 |
初始化和脱离信号量(静态)
对于静态信号量对象,它的内存空间在编译时期就被编译器分配出来,放在读写数据段或未初始化数据段上,此时使用信号量就不再需要使用 rt_sem_create 接口来创建它,而只需在使用前对它进行初始化即可。初始化信号量对象可使用下面的函数接口:
rt_err_t rt_sem_init(rt_sem_t sem,
const char *name,
rt_uint32_t value,
rt_uint8_t flag)
当调用这个函数时,系统将对这个 semaphore 对象进行初始化,然后初始化 IPC 对象以及与 semaphore 相关的部分。信号量标志可用上面创建信号量函数里提到的标志。下表描述了该函数的输入参数与返回值:
参数 | 描述 |
---|---|
sem | 信号量对象的句柄 |
name | 信号量名称 |
value | 信号量初始值 |
flag | 信号量标志,它可以取如下数值: RT_IPC_FLAG_FIFO 或 RT_IPC_FLAG_PRIO |
返回 | —— |
RT_EOK | 初始化成功 |
脱离信号量就是让信号量对象从内核对象管理器中脱离,适用于静态初始化的信号量。脱离信号量使用下面的函数接口:
rt_err_t rt_sem_detach(rt_sem_t sem);
使用该函数后,内核先唤醒所有挂在该信号量等待队列上的线程,然后将该信号量从内核对象管理器中脱离。原来挂起在信号量上的等待线程将获得 - RT_ERROR 的返回值。下表描述了该函数的输入参数与返回值:
参数 | 描述 |
---|---|
sem | 信号量对象的句柄 |
返回 | —— |
RT_EOK | 脱离成功 |
2.1.3 其他控制
获取信号量
线程通过获取信号量来获得信号量资源实例,当信号量值大于零时,线程将获得信号量,并且相应的信号量值会减 1,获取信号量使用下面的函数接口:
rt_err_t rt_sem_take (rt_sem_t sem, rt_int32_t time);
在调用这个函数时,如果信号量的值等于零,那么说明当前信号量资源实例不可用,申请该信号量的线程将根据 time 参数的情况选择直接返回、或挂起等待一段时间、或永久等待,直到其他线程或中断释放该信号量。如果在参数 time 指定的时间内依然得不到信号量,线程将超时返回,返回值是 - RT_ETIMEOUT。下表描述了该函数的输入参数与返回值:
参数 | 描述 |
---|---|
sem | 信号量对象的句柄 |
time | 指定的等待时间,单位是操作系统时钟节拍(OS Tick) |
返回 | —— |
RT_EOK | 成功获得信号量 |
-RT_ETIMEOUT | 超时依然未获得信号量 |
-RT_ERROR | 其他错误 |
无等待获取信号量
当用户不想在申请的信号量上挂起线程进行等待时,可以使用无等待方式获取信号量,无等待获取信号量使用下面的函数接口:
rt_err_t rt_sem_trytake(rt_sem_t sem);
复制错误复制成功
这个函数与 rt_sem_take(sem, RT_WAITING_NO)
的作用相同,即当线程申请的信号量资源实例不可用的时候,它不会等待在该信号量上,而是直接返回 - RT_ETIMEOUT。下表描述了该函数的输入参数与返回值:
参数 | 描述 |
---|---|
sem | 信号量对象的句柄 |
返回 | —— |
RT_EOK | 成功获得信号量 |
-RT_ETIMEOUT | 获取失败 |
释放信号量
释放信号量可以唤醒挂起在该信号量上的线程。释放信号量使用下面的函数接口:
rt_err_t rt_sem_release(rt_sem_t sem);
例如当信号量的值等于零时,并且有线程等待这个信号量时,释放信号量将唤醒等待在该信号量线程队列中的第一个线程,由它获取信号量;否则将把信号量的值加 1。下表描述了该函数的输入参数与返回值:
参数 | 描述 |
---|---|
sem | 信号量对象的句柄 |
返回 | —— |
RT_EOK | 成功释放信号量 |
2.1.4 信号量应用示例
这是一个信号量使用例程,该例程创建了一个动态信号量,初始化两个线程,一个线程发送信号量,一个线程接收到信号量后,执行相应的操作。如下代码所示:
#include <rtthread.h>
#define THREAD_PRIORITY 25
#define THREAD_TIMESLICE 5
/* 指向信号量的指针 */
static rt_sem_t dynamic_sem = RT_NULL;
ALIGN(RT_ALIGN_SIZE)
static char thread1_stack[1024];
static struct rt_thread thread1;
static void rt_thread1_entry(void *parameter)
{
static rt_uint8_t count = 0;
while(1)
{
if(count <= 100)
{
count++;
}
else
return;
/* count 每计数 10 次,就释放一次信号量 */
if(0 == (count % 10))
{
rt_kprintf("t1 release a dynamic semaphore.\n");
rt_sem_release(dynamic_sem);
}
}
}
ALIGN(RT_ALIGN_SIZE)
static char thread2_stack[1024];
static struct rt_thread thread2;
static void rt_thread2_entry(void *parameter)
{
static rt_err_t result;
static rt_uint8_t number = 0;
while(1)
{
/* 永久方式等待信号量,获取到信号量,则执行 number 自加的操作 */
result = rt_sem_take(dynamic_sem, RT_WAITING_FOREVER);
if (result != RT_EOK)
{
rt_kprintf("t2 take a dynamic semaphore, failed.\n");
rt_sem_delete(dynamic_sem);
return;
}
else
{
number++;
rt_kprintf("t2 take a dynamic semaphore. number = %d\n" ,number);
}
}
}
/* 信号量示例的初始化 */
int semaphore_sample(void)
{
/* 创建一个动态信号量,初始值是 0 */
dynamic_sem = rt_sem_create("dsem", 0, RT_IPC_FLAG_PRIO);
if (dynamic_sem == RT_NULL)
{
rt_kprintf("create dynamic semaphore failed.\n");
return -1;
}
else
{
rt_kprintf("create done. dynamic semaphore value = 0.\n");
}
rt_thread_init(&thread1,
"thread1",
rt_thread1_entry,
RT_NULL,
&thread1_stack[0],
sizeof(thread1_stack),
THREAD_PRIORITY, THREAD_TIMESLICE);
rt_thread_startup(&thread1);
rt_thread_init(&thread2,
"thread2",
rt_thread2_entry,
RT_NULL,
&thread2_stack[0],
sizeof(thread2_stack),
THREAD_PRIORITY-1, THREAD_TIMESLICE);
rt_thread_startup(&thread2);
return 0;
}
/* 导出到 msh 命令列表中 */
MSH_CMD_EXPORT(semaphore_sample, semaphore sample);
如上面运行结果:线程 1 在 count 计数为 10 的倍数时(count 计数为 100 之后线程退出),发送一个信号量,线程 2 在接收信号量后,对 number 进行加 1 操作。
信号量的另一个应用例程如下所示,本例程将使用 2 个线程、3 个信号量实现生产者与消费者的例子。其中:
3 个信号量分别为:①lock:信号量锁的作用,因为 2 个线程都会对同一个数组 array 进行操作,所以该数组是一个共享资源,锁用来保护这个共享资源。②empty:空位个数,初始化为 5 个空位。③full:满位个数,初始化为 0 个满位。
2 个线程分别为:①生产者线程:获取到空位后,产生一个数字,循环放入数组中,然后释放一个满位。②消费者线程:获取到满位后,读取数组内容并相加,然后释放一个空位。
仿真结果:
\ | /
- RT - Thread Operating System
/ | \ 3.1.0 build Aug 27 2018
2006 - 2018 Copyright by rt-thread team
msh >semaphore_sample
create done. dynamic semaphore value = 0.
msh >t1 release a dynamic semaphore.
t2 take a dynamic semaphore. number = 1
t1 release a dynamic semaphore.
t2 take a dynamic semaphore. number = 2
t1 release a dynamic semaphore.
t2 take a dynamic semaphore. number = 3
t1 release a dynamic semaphore.
t2 take a dynamic semaphore. number = 4
t1 release a dynamic semaphore.
t2 take a dynamic semaphore. number = 5
t1 release a dynamic semaphore.
t2 take a dynamic semaphore. number = 6
t1 release a dynamic semaphore.
t2 take a dynamic semaphore. number = 7
t1 release a dynamic semaphore.
t2 take a dynamic semaphore. number = 8
t1 release a dynamic semaphore.
t2 take a dynamic semaphore. number = 9
t1 release a dynamic semaphore.
t2 take a dynamic semaphore. number = 10
2.1.5 信号量使用场合
信号量是一种非常灵活的同步方式,可以运用在多种场合中。形成锁、同步、资源计数等关系,也能方便的用于线程与线程、中断与线程间的同步中。
线程同步
线程同步是信号量最简单的一类应用。例如,使用信号量进行两个线程之间的同步,信号量的值初始化成 0,表示具备 0 个信号量资源实例;而尝试获得该信号量的线程,将直接在这个信号量上进行等待。
当持有信号量的线程完成它处理的工作时,释放这个信号量,可以把等待在这个信号量上的线程唤醒,让它执行下一部分工作。这类场合也可以看成把信号量用于工作完成标志:持有信号量的线程完成它自己的工作,然后通知等待该信号量的线程继续下一部分工作。
锁(该功能仅做了解)
锁,单一的锁常应用于多个线程间对同一共享资源(即临界区)的访问。信号量在作为锁来使用时,通常应将信号量资源实例初始化成 1,代表系统默认有一个资源可用,因为信号量的值始终在 1 和 0 之间变动,所以这类锁也叫做二值信号量。如下图所示,当线程需要访问共享资源时,它需要先获得这个资源锁。当这个线程成功获得资源锁时,其他打算访问共享资源的线程会由于获取不到资源而挂起,这是因为其他线程在试图获取这个锁时,这个锁已经被锁上(信号量值是 0)。当获得信号量的线程处理完毕,退出临界区时,它将会释放信号量并把锁解开,而挂起在锁上的第一个等待线程将被唤醒从而获得临界区的访问权。
注:在计算机操作系统发展历史上,人们早期使用二值信号量来保护临界区,但是在1990年,研究人员发现了使用信号量保护临界区会导致无界优先级反转的问题,因此提出了互斥量的概念。如今,我们已经不使用二值信号量来保护临界区,互斥量取而代之。
中断与线程的同步
信号量也能够方便地应用于中断与线程间的同步,例如一个中断触发,中断服务例程需要通知线程进行相应的数据处理。这个时候可以设置信号量的初始值是 0,线程在试图持有这个信号量时,由于信号量的初始值是 0,线程直接在这个信号量上挂起直到信号量被释放。当中断触发时,先进行与硬件相关的动作,例如从硬件的 I/O 口中读取相应的数据,并确认中断以清除中断源,而后释放一个信号量来唤醒相应的线程以做后续的数据处理。例如 FinSH 线程的处理方式,如下图所示。
信号量的值初始为 0,当 FinSH 线程试图取得信号量时,因为信号量值是 0,所以它会被挂起。当 console 设备有数据输入时,产生中断,从而进入中断服务例程。在中断服务例程中,它会读取 console 设备的数据,并把读得的数据放入 UART buffer 中进行缓冲,而后释放信号量,释放信号量的操作将唤醒 shell 线程。在中断服务例程运行完毕后,如果系统中没有比 shell 线程优先级更高的就绪线程存在时,shell 线程将持有信号量并运行,从 UART buffer 缓冲区中获取输入的数据。
注:中断与线程间的互斥不能采用信号量(锁)的方式,而应采用开关中断的方式。
资源计数
信号量也可以认为是一个递增或递减的计数器,需要注意的是信号量的值非负。例如:初始化一个信号量的值为 5,则这个信号量可最大连续减少 5 次,直到计数器减为 0。资源计数适合于线程间工作处理速度不匹配的场合,这个时候信号量可以做为前一线程工作完成个数的计数,而当调度到后一线程时,它也可以以一种连续的方式一次处理多个事件。例如,生产者与消费者问题中,生产者可以对信号量进行多次释放,而后消费者被调度到时能够一次处理多个信号量资源。
注:一般资源计数类型多是混合方式的线程间同步,因为对于单个的资源处理依然存在线程的多重访问,这就需要对一个单独的资源进行访问、处理,并进行锁方式的互斥操作。
2.3. 互斥量
2.3.1 互斥量概念
互斥量又叫相互排斥的信号量,是一种特殊的二值信号量。互斥量类似于只有一个车位的停车场:当有一辆车进入的时候,将停车场大门锁住,其他车辆在外面等候。当里面的车出来时,将停车场大门打开,下一辆车才可以进入。
2.3.2 互斥量工作机制
互斥量和信号量不同的是:拥有互斥量的线程拥有互斥量的所有权,互斥量支持递归访问且能防止线程优先级翻转;并且互斥量只能由持有线程释放,而信号量则可以由任何线程释放。
互斥量的状态只有两种,开锁或闭锁(两种状态值)。当有线程持有它时,互斥量处于闭锁状态,由这个线程获得它的所有权。相反,当这个线程释放它时,将对互斥量进行开锁,失去它的所有权。当一个线程持有互斥量时,其他线程将不能够对它进行开锁或持有它,持有该互斥量的线程也能够再次获得这个锁而不被挂起,如下图时所示。这个特性与一般的二值信号量有很大的不同:在信号量中,因为已经不存在实例,线程递归持有会发生主动挂起(最终形成死锁)。
使用信号量会导致的另一个潜在问题是线程优先级翻转问题。所谓优先级翻转,即当一个高优先级线程试图通过信号量机制访问共享资源时,如果该信号量已被一低优先级线程持有,而这个低优先级线程在运行过程中可能又被其它一些中等优先级的线程抢占,因此造成高优先级线程被许多具有较低优先级的线程阻塞,实时性难以得到保证。如下图所示:有优先级为 A、B 和 C 的三个线程,优先级 A> B > C。线程 A,B 处于挂起状态,等待某一事件触发,线程 C 正在运行,此时线程 C 开始使用某一共享资源 M。在使用过程中,线程 A 等待的事件到来,线程 A 转为就绪态,因为它比线程 C 优先级高,所以立即执行。但是当线程 A 要使用共享资源 M 时,由于其正在被线程 C 使用,因此线程 A 被挂起切换到线程 C 运行。如果此时线程 B 等待的事件到来,则线程 B 转为就绪态。由于线程 B 的优先级比线程 C 高,且线程B没有用到共享资源 M ,因此线程 B 开始运行,直到其运行完毕,线程 C 才开始运行。只有当线程 C 释放共享资源 M 后,线程 A 才得以执行。在这种情况下,优先级发生了翻转:线程 B 先于线程 A 运行。这样便不能保证高优先级线程的响应时间。
在 RT-Thread 操作系统中,互斥量可以解决优先级翻转问题,实现的是优先级继承协议 (Sha, 1990)。优先级继承是通过在线程 A 尝试获取共享资源而被挂起的期间内,将线程 C 的优先级提升到线程 A 的优先级别,从而解决优先级翻转引起的问题。这样能够防止 C(间接地防止 A)被 B 抢占,如下图所示。优先级继承是指,提高某个占有某种资源的低优先级线程的优先级,使之与所有等待该资源的线程中优先级最高的那个线程的优先级相等,然后执行,而当这个低优先级线程释放该资源时,优先级重新回到初始设定。因此,继承优先级的线程避免了系统资源被任何中间优先级的线程抢占。
注:在获得互斥量后,请尽快释放互斥量,并且在持有互斥量的过程中,不得再行更改持有互斥量线程的优先级,否则可能人为引入无界优先级反转的问题。
互斥量控制块
在 RT-Thread 中,互斥量控制块是操作系统用于管理互斥量的一个数据结构,由结构体 struct rt_mutex 表示。另外一种 C 表达方式 rt_mutex_t,表示的是互斥量的句柄,在 C 语言中的实现是指互斥量控制块的指针。互斥量控制块结构的详细定义请见以下代码:
struct rt_mutex
{
struct rt_ipc_object parent; /* 继承自 ipc_object 类 */
rt_uint16_t value; /* 互斥量的值 */
rt_uint8_t original_priority; /* 持有线程的原始优先级 */
rt_uint8_t hold; /* 持有线程的持有次数 */
struct rt_thread *owner; /* 当前拥有互斥量的线程 */
};
/* rt_mutext_t 为指向互斥量结构体的指针类型 */
typedef struct rt_mutex* rt_mutex_t;
rt_mutex 对象从 rt_ipc_object 中派生,由 IPC 容器所管理。
2.3.3 互斥信号量工作模式
互斥量控制块中含有互斥相关的重要参数,在互斥量功能的实现中起到重要的作用。互斥量相关接口如下图所示,对一个互斥量的操作包含:创建 / 初始化互斥量、获取互斥量、释放互斥量、删除 / 脱离互斥量。
创建和删除互斥量
创建一个互斥量时,内核首先创建一个互斥量控制块,然后完成对该控制块的初始化工作。创建互斥量使用下面的函数接口:
rt_mutex_t rt_mutex_create (const char* name, rt_uint8_t flag);
可以调用 rt_mutex_create 函数创建一个互斥量,它的名字由 name 所指定。当调用这个函数时,系统将先从对象管理器中分配一个 mutex 对象,并初始化这个对象,然后初始化父类 IPC 对象以及与 mutex 相关的部分。互斥量的 flag 标志已经作废,无论用户选择 RT_IPC_FLAG_PRIO 还是 RT_IPC_FLAG_FIFO,内核均按照 RT_IPC_FLAG_PRIO 处理。下表描述了该函数的输入参数与返回值:
参数 | 描述 |
---|---|
name | 互斥量的名称 |
flag | 该标志已经作废,无论用户选择 RT_IPC_FLAG_PRIO 还是 RT_IPC_FLAG_FIFO,内核均按照 RT_IPC_FLAG_PRIO 处理 |
返回 | —— |
互斥量句柄 | 创建成功 |
RT_NULL | 创建失败 |
当不再使用互斥量时,通过删除互斥量以释放系统资源,适用于动态创建的互斥量。删除互斥量使用下面的函数接口:
rt_err_t rt_mutex_delete (rt_mutex_t mutex);
当删除一个互斥量时,所有等待此互斥量的线程都将被唤醒,等待线程获得的返回值是 - RT_ERROR。然后系统将该互斥量从内核对象管理器链表中删除并释放互斥量占用的内存空间。下表描述了该函数的输入参数与返回值:
参数 | 描述 |
---|---|
mutex | 互斥量对象的句柄 |
返回 | —— |
RT_EOK | 删除成功 |
初始化和脱离互斥量
静态互斥量对象的内存是在系统编译时由编译器分配的,一般放于读写数据段或未初始化数据段中。在使用这类静态互斥量对象前,需要先进行初始化。初始化互斥量使用下面的函数接口:
rt_err_t rt_mutex_init (rt_mutex_t mutex, const char* name, rt_uint8_t flag);
使用该函数接口时,需指定互斥量对象的句柄(即指向互斥量控制块的指针),互斥量名称以及互斥量标志。互斥量标志可用上面创建互斥量函数里提到的标志。下表描述了该函数的输入参数与返回值:
参数 | 描述 |
---|---|
mutex | 互斥量对象的句柄,它由用户提供,并指向互斥量对象的内存块 |
name | 互斥量的名称 |
flag | 该标志已经作废,无论用户选择 RT_IPC_FLAG_PRIO 还是 RT_IPC_FLAG_FIFO,内核均按照 RT_IPC_FLAG_PRIO 处理 |
返回 | —— |
RT_EOK | 初始化成功 |
脱离互斥量将把互斥量对象从内核对象管理器中脱离,适用于静态初始化的互斥量。脱离互斥量使用下面的函数接口:
rt_err_t rt_mutex_detach (rt_mutex_t mutex);
使用该函数接口后,内核先唤醒所有挂在该互斥量上的线程(线程的返回值是 -RT_ERROR),然后系统将该互斥量从内核对象管理器中脱离。下表描述了该函数的输入参数与返回值:
参数 | 描述 |
---|---|
mutex | 互斥量对象的句柄 |
返回 | —— |
RT_EOK | 成功 |
2.3.4 其余辅助模式
线程获取了互斥量,那么线程就有了对该互斥量的所有权,即某一个时刻一个互斥量只能被一个线程持有。获取互斥量使用下面的函数接口:
rt_err_t rt_mutex_take (rt_mutex_t mutex, rt_int32_t time);
如果互斥量没有被其他线程控制,那么申请该互斥量的线程将成功获得该互斥量。如果互斥量已经被当前线程线程控制,则该互斥量的持有计数加 1,当前线程也不会挂起等待。如果互斥量已经被其他线程占有,则当前线程在该互斥量上挂起等待,直到其他线程释放它或者等待时间超过指定的超时时间。下表描述了该函数的输入参数与返回值:
参数 | 描述 |
---|---|
mutex | 互斥量对象的句柄 |
time | 指定等待的时间 |
返回 | —— |
RT_EOK | 成功获得互斥量 |
-RT_ETIMEOUT | 超时 |
-RT_ERROR | 获取失败 |
无等待获取互斥量
当用户不想在申请的互斥量上挂起线程进行等待时,可以使用无等待方式获取互斥量,无等待获取互斥量使用下面的函数接口:
rt_err_t rt_mutex_trytake(rt_mutex_t mutex);
这个函数与 rt_mutex_take(mutex, RT_WAITING_NO)
的作用相同,即当线程申请的互斥量资源实例不可用的时候,它不会等待在该互斥量上,而是直接返回 - RT_ETIMEOUT。下表描述了该函数的输入参数与返回值:
参数 | 描述 |
---|---|
mutex | 互斥量对象的句柄 |
返回 | —— |
RT_EOK | 成功获得互斥量 |
-RT_ETIMEOUT | 获取失败 |
释放互斥量
当线程完成互斥资源的访问后,应尽快释放它占据的互斥量,使得其他线程能及时获取该互斥量。释放互斥量使用下面的函数接口:
rt_err_t rt_mutex_release(rt_mutex_t mutex);
使用该函数接口时,只有已经拥有互斥量控制权的线程才能释放它,每释放一次该互斥量,它的持有计数就减 1。当该互斥量的持有计数为零时(即持有线程已经释放所有的持有操作),它变为可用,等待在该信号量上的线程将被唤醒。如果线程的运行优先级被互斥量提升,那么当互斥量被释放后,线程恢复为持有互斥量前的优先级。下表描述了该函数的输入参数与返回值:
参数 | 描述 |
---|---|
mutex | 互斥量对象的句柄 |
返回 | —— |
RT_EOK | 成功 |