文章目录
- 1. SparkSQL 概述
- 1.1 SparkSQL 是什么
- 1.2 Hive and SparkSQL
- 1.3 SparkSQL 特点
- 1.3.1 易整合
- 1.3.2 统一的数据访问
- 1.3.3 兼容 Hive
- 1.3.4 标准数据连接
- 1.4 DataFrame 是什么
- 1.5 DataSet 是什么
- 2. SparkSQL 核心编程
- 2.1 新的起点
- 2.2 DataFrame
- 2.2.1 创建 DataFrame
- 2.2.2 SQL 语法
- 2.2.3 DSL 语法
- 2.2.4 RDD 转换为 DataFrame
- 2.2.5 DataFrame 转换为 RDD
- 2.3 DataSet
- 2.3.1 创建 DataSet
- 2.3.2 RDD 转换为 DataSet
- 2.3.3 DataSet 转换为 RDD
- 2.4 DataFrame 和 DataSet 转换
- 2.5 RDD、DataFrame、DataSet 三者的关系
- 2.5.1 三者的共性
- 2.5.2 三者的区别
- 2.5.3 三者的互相转换
1. SparkSQL 概述
1.1 SparkSQL 是什么
1.2 Hive and SparkSQL
SparkSQL 的前身是 Shark,给熟悉 RDBMS 但又不理解 MapReduce 的技术人员提供快速上手的工具。
Hive 是早期唯一运行在 Hadoop 上的 SQL-on-Hadoop 工具。但是 MapReduce 计算过程中大量的中间磁盘落地过程消耗了大量的 I/O,降低的运行效率,为了提高 SQL-on-Hadoop的效率,大量的 SQL-on-Hadoop 工具开始产生,其中表现较为突出的是:
◾ Drill
◾ Impala
◾ Shark
其中 Shark是伯克利实验室 Spark 生态环境的组件之一,是基于 Hive 所开发的工具,它修改了下图所示的右下角的内存管理、物理计划、执行三个模块,并使之能运行在 Spark 引擎上。
Shark 的出现,使得 SQL-on-Hadoop 的性能比 Hive 有了 10-100 倍的提高。
但是,随着 Spark 的发展,对于野心勃勃的 Spark 团队来说,Shark 对于 Hive 的太多依赖(如采用 Hive 的语法解析器、查询优化器等等),制约了 Spark 的 One Stack Rule Them All的既定方针,制约了 Spark 各个组件的相互集成,所以提出了 SparkSQL 项目。SparkSQL抛弃原有 Shark 的代码,汲取了 Shark 的一些优点,如内存列存储(In-Memory Columnar Storage)、Hive兼容性等,重新开发了SparkSQL代码;由于摆脱了对Hive的依赖性,SparkSQL无论在数据兼容、性能优化、组件扩展方面都得到了极大的方便,真可谓“退一步,海阔天空”。
➢ 数据兼容方面 SparkSQL 不但兼容 Hive,还可以从 RDD、parquet 文件、JSON 文件中获取数据,未来版本甚至支持获取 RDBMS 数据以及 cassandra 等 NOSQL 数据;
➢ 性能优化方面 除了采取 In-Memory Columnar Storage、byte-code generation 等优化技术外、将会引进 Cost Model 对查询进行动态评估、获取最佳物理计划等等;
➢ 组件扩展方面 无论是 SQL 的语法解析器、分析器还是优化器都可以重新定义,进行扩展。
2014 年 6 月 1 日 Shark 项目和 SparkSQL 项目的主持人 Reynold Xin 宣布:停止对 Shark 的开发,团队将所有资源放 SparkSQL 项目上,至此,Shark 的发展画上了句话,但也因此发展出两个支线:SparkSQL 和 Hive on Spark。
其中 SparkSQL 作为 Spark 生态的一员继续发展,而不再受限于 Hive,只是兼容 Hive;而Hive on Spark 是一个 Hive 的发展计划,该计划将 Spark 作为 Hive 的底层引擎之一,也就是说,Hive 将不再受限于一个引擎,可以采用 Map-Reduce、Tez、Spark 等引擎。
对于开发人员来讲,SparkSQL 可以简化 RDD 的开发,提高开发效率,且执行效率非常快,所以实际工作中,基本上采用的就是 SparkSQL。Spark SQL 为了简化 RDD 的开发,提高开发效率,提供了 2 个编程抽象,类似 Spark Core 中的 RDD。
➢ DataFrame
➢ DataSet
1.3 SparkSQL 特点
1.3.1 易整合
无缝的整合了 SQL 查询和 Spark 编程
1.3.2 统一的数据访问
使用相同的方式连接不同的数据源
1.3.3 兼容 Hive
在已有的仓库上直接运行 SQL 或者 HiveQL
1.3.4 标准数据连接
通过 JDBC 或者 ODBC 来连接
1.4 DataFrame 是什么
在 Spark 中,DataFrame 是一种以 RDD 为基础的分布式数据集,类似于传统数据库中的二维表格。
DataFrame 与 RDD 的主要区别在于,前者带有 schema 元信息,即 DataFrame所表示的二维表数据集的每一列都带有名称和类型。这使得 Spark SQL 得以洞察更多的结构信息,从而对藏于 DataFrame 背后的数据源以及作用于 DataFrame 之上的变换进行了针对性的优化,最终达到大幅提升运行时效率的目标。反观 RDD,由于无从得知所存数据元素的具体内部结构,Spark Core 只能在 stage 层面进行简单、通用的流水线优化。
同时,与 Hive 类似,DataFrame 也支持嵌套数据类型(struct、array 和 map)。从 API 易用性的角度上看,DataFrame API 提供的是一套高层的关系操作,比函数式的 RDD API 要更加友好,门槛更低。
上图直观地体现了 DataFrame 和 RDD 的区别。
左侧的 RDD[Person]虽然以 Person 为类型参数,但 Spark 框架本身不了解 Person 类的内部结构。而右侧的 DataFrame 却提供了详细的结构信息,使得 Spark SQL 可以清楚地知道该数据集中包含哪些列,每列的名称和类型各是什么。
DataFrame 是为数据提供了 Schema 的视图。可以把它当做数据库中的一张表来对待。
DataFrame 也是懒执行的,但性能上比 RDD 要高,主要原因:优化的执行计划,即查询计划通过 Spark catalyst optimiser 进行优化。比如下面一个例子:
为了说明查询优化,我们来看上图展示的人口数据分析的示例。图中构造了两个DataFrame,将它们 join 之后又做了一次 filter 操作。如果原封不动地执行这个执行计划,最终的执行效率是不高的。因为 join 是一个代价较大的操作,也可能会产生一个较大的数据集。如果我们能将 filter 下推到 join 下方,先对 DataFrame 进行过滤,再 join 过滤后的较小的结果集,便可以有效缩短执行时间。而Spark SQL 的查询优化器正是这样做的。简而言之,逻辑查询计划优化就是一个利用基于关系代数的等价变换,将高成本的操作替换为低成本操作的过程。
1.5 DataSet 是什么
DataSet 是分布式数据集合。DataSet 是 Spark 1.6 中添加的一个新抽象,是 DataFrame的一个扩展。它提供了 RDD 的优势(强类型,使用强大的 lambda 函数的能力)以及 Spark SQL 优化执行引擎的优点。DataSet 也可以使用功能性的转换(操作 map,flatMap,filter等等)。
➢ DataSet 是 DataFrame API 的一个扩展,是 SparkSQL 最新的数据抽象
➢ 用户友好的 API 风格,既具有类型安全检查也具有 DataFrame 的查询优化特性;
➢ 用样例类来对 DataSet 中定义数据的结构信息,样例类中每个属性的名称直接映射到DataSet 中的字段名称;
➢ DataSet 是强类型的。比如可以有 DataSet[Car],DataSet[Person]。
➢ DataFrame 是 DataSet 的特列,DataFrame=DataSet[Row] ,所以可以通过 as 方法将DataFrame 转换为 DataSet。Row 是一个类型,跟 Car、Person 这些的类型一样,所有的表结构信息都用 Row 来表示。获取数据时需要指定顺序
2. SparkSQL 核心编程
本课件重点学习如何使用 Spark SQL 所提供的DataFrame 和 DataSet 模型进行编程.,以及了解它们之间的关系和转换,关于具体的 SQL 书写不是我们的重点。
2.1 新的起点
Spark Core 中,如果想要执行应用程序,需要首先构建上下文环境对象 SparkContext,
Spark SQL 其实可以理解为对 Spark Core 的一种封装,不仅仅在模型上进行了封装,上下文环境对象也进行了封装。
在老的版本中,SparkSQL 提供两种 SQL 查询起始点:一个叫 SQLContext,用于 Spark自己提供的 SQL 查询;一个叫 HiveContext,用于连接 Hive 的查询。
SparkSession
是 Spark 最新的 SQL 查询起始点,实质上是 SQLContext 和 HiveContext的组合,所以在SQLContex 和 HiveContext 上可用的 API 在SparkSession 上同样是可以使用的。SparkSession 内部封装了 SparkContext,所以计算实际上是由 sparkContext 完成的。当我们使用 spark-shell 的时候, spark 框架会自动的创建一个名称叫做 spark 的 SparkSession 对象, 就像我们以前可以自动获取到一个 sc 来表示 SparkContext 对象一样。
2.2 DataFrame
Spark SQL 的 DataFrame API 允许我们使用 DataFrame 而不用必须去注册临时表或者生成 SQL 表达式。DataFrame API 既有 transformation 操作也有 action 操作。
2.2.1 创建 DataFrame
在 Spark SQL 中 SparkSession 是创建 DataFrame 和执行 SQL 的入口,创建 DataFrame有三种方式:通过Spark 的数据源进行创建;从一个存在的 RDD 进行转换;还可以从 Hive Table 进行查询返回。
- 从 Spark 数据源进行创建
➢ 查看 Spark 支持创建文件的数据源格式
scala> spark.read
csv format jdbc json load option options orc parquet schema
table text textFile
➢ 在 spark 的 bin/data 目录中创建 user.json 文件
{"username":"zhangsan","age":20}
➢ 读取 json 文件创建 DataFrame
scala> val df = spark.read.json("data/user.json")
df: org.apache.spark.sql.DataFrame = [age: bigint, username: string]
注意:如果从内存中获取数据,spark 可以知道数据类型具体是什么。如果是数字,默认作为 Int 处理;但是从文件中读取的数字,不能确定是什么类型,所以用 bigint 接收,可以和Long 类型转换,但是和 Int 不能进行转换
➢ 展示结果
+---+--------+
|age|username|
+---+--------+
| 20|zhangsan|
+---+--------+
- 从 RDD 进行转换
在后续章节中讨论 - 从 Hive Table 进行查询返回
在后续章节中讨论
2.2.2 SQL 语法
SQL 语法风格是指我们查询数据的时候使用 SQL 语句来查询,这种风格的查询必须要有临时视图或者全局视图来辅助
- 读取 JSON 文件创建 DataFrame
scala> val df = spark.read.json("data/user.json")
df: org.apache.spark.sql.DataFrame = [age: bigint, username: string]
- 对 DataFrame 创建一个临时表
scala> df.createOrReplaceTempView("people")
- 通过 SQL 语句实现查询全表
scala> val sqlDF = spark.sql("SELECT * FROM people")
sqlDF: org.apache.spark.sql.DataFrame = [age: bigint, name: string]
- 结果展示
scala> sqlDF.show
+---+--------+
|age|username|
+---+--------+
| 20|zhangsan|
| 30| lisi|
| 40| wangwu|
+---+--------+
注意:普通临时表是 Session 范围内的,如果想应用范围内有效,可以使用全局临时表。使用全局临时表时需要全路径访问,如:global_temp.people
- 对于 DataFrame 创建一个全局表
scala> df.createGlobalTempView("people")
- 通过 SQL 语句实现查询全表
scala> spark.sql("SELECT * FROM global_temp.people").show()
+---+--------+
|age|username|
+---+--------+
| 20|zhangsan|
| 30| lisi|
| 40| wangwu|
+---+--------+
scala> spark.newSession().sql("SELECT * FROM global_temp.people").show()
+---+--------+
|age|username|
+---+--------+
| 20|zhangsan|
| 30| lisi|
| 40| wangwu|
+---+--------+
2.2.3 DSL 语法
DataFrame 提供一个特定领域语言(domain-specific language, DSL)去管理结构化的数据。可以在 Scala, Java, Python 和 R 中使用 DSL,使用 DSL 语法风格不必去创建临时视图了
- 创建一个 DataFrame
scala> val df = spark.read.json("data/user.json")
df: org.apache.spark.sql.DataFrame = [age: bigint, name: string]
- 查看 DataFrame 的 Schema 信息
scala> df.printSchema
root
|-- age: Long (nullable = true)
|-- username: string (nullable = true)
- 只查看"username"列数据,
scala> df.select("username").show()
+--------+
|username|
+--------+
|zhangsan|
| lisi|
| wangwu|
+--------+
- 查看"username"列数据以及"age+1"数据
注意:涉及到运算的时候, 每列都必须使用$, 或者采用引号表达式:单引号+字段名
scala> df.select($"username",$"age" + 1).show
scala> df.select('username, 'age + 1).show()
scala> df.select('username, 'age + 1 as "newage").show()
+--------+---------+
|username|(age + 1)|
+--------+---------+
|zhangsan| 21|
| lisi| 31|
| wangwu| 41|
+--------+---------+
- 查看"age"大于"30"的数据
scala> df.filter($"age">30).show
+---+---------+
|age| username|
+---+---------+
| 40| wangwu|
+---+---------+
- 按照"age"分组,查看数据条数
scala> df.groupBy("age").count.show
+---+-----+
|age|count|
+---+-----+
| 20| 1|
| 30| 1|
| 40| 1|
+---+-----+
2.2.4 RDD 转换为 DataFrame
在 IDEA 中开发程序时,如果需要 RDD 与 DF 或者 DS 之间互相操作,那么需要引入import spark.implicits._
这里的 spark 不是 Scala 中的包名,而是创建的sparkSession 对象的变量名称,所以必须先创建SparkSession 对象再导入。这里的 spark 对象不能使用 var 声明,因为 Scala 只支持val 修饰的对象的引入。
spark-shell 中无需导入,自动完成此操作。
scala> val idRDD = sc.textFile("data/id.txt")
scala> idRDD.toDF("id").show
+---+
| id|
+---+
| 1|
| 2|
| 3|
| 4|
+---+
实际开发中,一般通过样例类将 RDD 转换为 DataFrame
scala> case class User(name:String, age:Int)
defined class User
scala> sc.makeRDD(List(("zhangsan",30),("lisi",40))).map(t=>User(t._1, t._2)).toDF.show
+--------+---+
| name|age|
+--------+---+
|zhangsan| 30|
| lisi| 40|
+--------+---+
2.2.5 DataFrame 转换为 RDD
DataFrame 其实就是对 RDD 的封装,所以可以直接获取内部的 RDD
scala> val df = sc.makeRDD(List(("zhangsan",30),("lisi",40))).map(t=>User(t._1, t._2)).toDF
df: org.apache.spark.sql.DataFrame = [name: string, age: int]
scala> val rdd = df.rdd
rdd:org.apache.spark.rdd.RDD[org.apache.spark.sqL.Row] = MapPartitionsRDD[46] at rdd at <console>:25
scala> val array = rdd.collect
array: Array[org.apache.spark.sql.Row] = Array([zhangsan,30], [lisi,40])
注意:此时得到的 RDD 存储类型为 Row
scala> array(0)
res28: org.apache.spark.sql.Row = [zhangsan,30]
scala> array(0)(0)
res29: Any = zhangsan
scala> array(0).getAs[String]("name")
res30: String = zhangsan
2.3 DataSet
DataSet 是具有强类型
的数据集合,需要提供对应的类型信息。
2.3.1 创建 DataSet
1) 使用样例类序列创建 DataSet
scala> case class Person(name: String, age: Long)
defined class Person
scala> val caseClassDS = Seq(Person("zhangsan",2)).toDS()
caseClassDS: org.apache.spark.sql.Dataset[Person] = [name: string, age: Long]
scala> caseClassDS.show
+---------+---+
| name|age|
+---------+---+
| zhangsan| 2|
+---------+---+
2) 使用基本类型的序列创建 DataSet
scala> val ds = Seq(1,2,3,4,5).toDS
ds: org.apache.spark.sql.Dataset[Int] = [value: int]
scala> ds.show
+-----+
|value|
+-----+
| 1|
| 2|
| 3|
| 4|
| 5|
+-----+
注意:在实际使用的时候,很少用到把序列转换成DataSet,更多的是通过RDD来得到DataSet
2.3.2 RDD 转换为 DataSet
SparkSQL 能够自动将包含有 case 类的 RDD 转换成 DataSet,case 类定义了 table 的结构,case 类属性通过反射变成了表的列名。Case 类可以包含诸如 Seq 或者 Array 等复杂的结构。
scala> case class User(name:String, age:Int)
defined class User
scala> sc.makeRDD(List(("zhangsan",30), ("lisi",49))).map(t=>User(t._1,
t._2)).toDS
res11: org.apache.spark.sql.Dataset[User] = [name: string, age: int]
2.3.3 DataSet 转换为 RDD
DataSet 其实也是对 RDD 的封装,所以可以直接获取内部的 RDD
scala> case class User(name:String, age:Int)
defined class User
scala> sc.makeRDD(List(("zhangsan",30), ("lisi",49))).map(t=>User(t._1,
t._2)).toDS
res11: org.apache.spark.sql.Dataset[User] = [name: string, age: int]
scala> val rdd = res11.rdd
rdd: org.apache.spark.rdd.RDD[User] = MapPartitionsRDD[51] at rdd at
<console>:25
scala> rdd.collect
res12: Array[User] = Array(User(zhangsan,30), User(lisi,49))
2.4 DataFrame 和 DataSet 转换
DataFrame 其实是 DataSet 的特例,所以它们之间是可以互相转换的。
➢ DataFrame 转换为 DataSet
scala> case class User(name:String, age:Int)
defined class User
scala> val df = sc.makeRDD(List(("zhangsan",30),
("lisi",49))).toDF("name","age")
df: org.apache.spark.sql.DataFrame = [name: string, age: int]
scala> val ds = df.as[User]
ds: org.apache.spark.sql.Dataset[User] = [name: string, age: int]
➢ DataSet 转换为 DataFrame
scala> val ds = df.as[User]
ds: org.apache.spark.sql.Dataset[User] = [name: string, age: int]
scala> val df = ds.toDF
df: org.apache.spark.sql.DataFrame = [name: string, age: int]
2.5 RDD、DataFrame、DataSet 三者的关系
在 SparkSQL 中 Spark 为我们提供了两个新的抽象,分别是 DataFrame 和 DataSet。他们和 RDD 有什么区别呢?首先从版本的产生上来看:
➢ Spark1.0 => RDD
➢ Spark1.3 => DataFrame
➢ Spark1.6 => Dataset
如果同样的数据都给到这三个数据结构,他们分别计算之后,都会给出相同的结果。不同是的他们的执行效率和执行方式。在后期的 Spark 版本中,DataSet 有可能会逐步取代 RDD和 DataFrame 成为唯一的 API 接口。
2.5.1 三者的共性
➢ RDD、DataFrame、DataSet 全都是 spark 平台下的分布式弹性数据集,为处理超大型数据提供便利;
➢ 三者都有惰性机制,在进行创建、转换,如 map 方法时,不会立即执行,只有在遇到Action 如 foreach 时,三者才会开始遍历运算;
➢ 三者有许多共同的函数,如 filter,排序等;
➢ 在对 DataFrame 和 Dataset 进行操作许多操作都需要这个包:import spark.implicits._(在创建好 SparkSession 对象后尽量直接导入)
➢ 三者都会根据 Spark 的内存情况自动缓存运算,这样即使数据量很大,也不用担心会内存溢出
➢ 三者都有 partition 的概念
➢ DataFrame 和 DataSet 均可使用模式匹配获取各个字段的值和类型
2.5.2 三者的区别
- RDD
➢ RDD 一般和 spark mllib 同时使用
➢ RDD 不支持 sparksql 操作 - DataFrame
➢ 与 RDD 和 Dataset 不同,DataFrame 每一行的类型固定为 Row,每一列的值没法直接访问,只有通过解析才能获取各个字段的值
➢ DataFrame 与 DataSet 一般不与 spark mllib 同时使用
➢ DataFrame 与 DataSet 均支持 SparkSQL 的操作,比如 select,groupby 之类,还能注册临时表/视窗,进行 sql 语句操作
➢ DataFrame 与 DataSet 支持一些特别方便的保存方式,比如保存成 csv,可以带上表头,这样每一列的字段名一目了然(后面专门讲解) - DataSet
➢ Dataset 和 DataFrame 拥有完全相同的成员函数,区别只是每一行的数据类型不同。
DataFrame 其实就是 DataSet 的一个特例 type DataFrame = Dataset[Row]
➢ DataFrame 也可以叫 Dataset[Row],每一行的类型是 Row,不解析,每一行究竟有哪些字段,各个字段又是什么类型都无从得知,只能用上面提到的 getAS 方法或者共性中的第七条提到的模式匹配拿出特定字段。而 Dataset 中,每一行是什么类型是不一定的,在自定义了 case class 之后可以很自由的获得每一行的信息。