【spark】第三章——SparkSQL

news2024/12/24 20:58:33

文章目录

  • 1. SparkSQL 概述
    • 1.1 SparkSQL 是什么
    • 1.2 Hive and SparkSQL
    • 1.3 SparkSQL 特点
      • 1.3.1 易整合
      • 1.3.2 统一的数据访问
      • 1.3.3 兼容 Hive
      • 1.3.4 标准数据连接
    • 1.4 DataFrame 是什么
    • 1.5 DataSet 是什么
  • 2. SparkSQL 核心编程
    • 2.1 新的起点
    • 2.2 DataFrame
      • 2.2.1 创建 DataFrame
      • 2.2.2 SQL 语法
      • 2.2.3 DSL 语法
      • 2.2.4 RDD 转换为 DataFrame
      • 2.2.5 DataFrame 转换为 RDD
    • 2.3 DataSet
      • 2.3.1 创建 DataSet
      • 2.3.2 RDD 转换为 DataSet
      • 2.3.3 DataSet 转换为 RDD
    • 2.4 DataFrame 和 DataSet 转换
    • 2.5 RDD、DataFrame、DataSet 三者的关系
      • 2.5.1 三者的共性
      • 2.5.2 三者的区别
      • 2.5.3 三者的互相转换


1. SparkSQL 概述

1.1 SparkSQL 是什么

在这里插入图片描述

1.2 Hive and SparkSQL

SparkSQL 的前身是 Shark,给熟悉 RDBMS 但又不理解 MapReduce 的技术人员提供快速上手的工具。

Hive 是早期唯一运行在 Hadoop 上的 SQL-on-Hadoop 工具。但是 MapReduce 计算过程中大量的中间磁盘落地过程消耗了大量的 I/O,降低的运行效率,为了提高 SQL-on-Hadoop的效率,大量的 SQL-on-Hadoop 工具开始产生,其中表现较为突出的是:
◾ Drill
◾ Impala
◾ Shark
其中 Shark是伯克利实验室 Spark 生态环境的组件之一,是基于 Hive 所开发的工具,它修改了下图所示的右下角的内存管理、物理计划、执行三个模块,并使之能运行在 Spark 引擎上。
在这里插入图片描述
Shark 的出现,使得 SQL-on-Hadoop 的性能比 Hive 有了 10-100 倍的提高。

在这里插入图片描述
但是,随着 Spark 的发展,对于野心勃勃的 Spark 团队来说,Shark 对于 Hive 的太多依赖(如采用 Hive 的语法解析器、查询优化器等等),制约了 Spark 的 One Stack Rule Them All的既定方针,制约了 Spark 各个组件的相互集成,所以提出了 SparkSQL 项目。SparkSQL抛弃原有 Shark 的代码,汲取了 Shark 的一些优点,如内存列存储(In-Memory Columnar Storage)、Hive兼容性等,重新开发了SparkSQL代码;由于摆脱了对Hive的依赖性,SparkSQL无论在数据兼容、性能优化、组件扩展方面都得到了极大的方便,真可谓“退一步,海阔天空”。

➢ 数据兼容方面 SparkSQL 不但兼容 Hive,还可以从 RDD、parquet 文件、JSON 文件中获取数据,未来版本甚至支持获取 RDBMS 数据以及 cassandra 等 NOSQL 数据;
➢ 性能优化方面 除了采取 In-Memory Columnar Storage、byte-code generation 等优化技术外、将会引进 Cost Model 对查询进行动态评估、获取最佳物理计划等等;
➢ 组件扩展方面 无论是 SQL 的语法解析器、分析器还是优化器都可以重新定义,进行扩展。
在这里插入图片描述
2014 年 6 月 1 日 Shark 项目和 SparkSQL 项目的主持人 Reynold Xin 宣布:停止对 Shark 的开发,团队将所有资源放 SparkSQL 项目上,至此,Shark 的发展画上了句话,但也因此发展出两个支线:SparkSQL 和 Hive on Spark。
在这里插入图片描述
其中 SparkSQL 作为 Spark 生态的一员继续发展,而不再受限于 Hive,只是兼容 Hive;而Hive on Spark 是一个 Hive 的发展计划,该计划将 Spark 作为 Hive 的底层引擎之一,也就是说,Hive 将不再受限于一个引擎,可以采用 Map-Reduce、Tez、Spark 等引擎。

对于开发人员来讲,SparkSQL 可以简化 RDD 的开发,提高开发效率,且执行效率非常快,所以实际工作中,基本上采用的就是 SparkSQL。Spark SQL 为了简化 RDD 的开发,提高开发效率,提供了 2 个编程抽象,类似 Spark Core 中的 RDD。

➢ DataFrame
➢ DataSet

1.3 SparkSQL 特点

1.3.1 易整合

无缝的整合了 SQL 查询和 Spark 编程
在这里插入图片描述

1.3.2 统一的数据访问

使用相同的方式连接不同的数据源
在这里插入图片描述

1.3.3 兼容 Hive

在已有的仓库上直接运行 SQL 或者 HiveQL
在这里插入图片描述

1.3.4 标准数据连接

通过 JDBC 或者 ODBC 来连接
在这里插入图片描述

1.4 DataFrame 是什么

在 Spark 中,DataFrame 是一种以 RDD 为基础的分布式数据集,类似于传统数据库中的二维表格。DataFrame 与 RDD 的主要区别在于,前者带有 schema 元信息,即 DataFrame所表示的二维表数据集的每一列都带有名称和类型。这使得 Spark SQL 得以洞察更多的结构信息,从而对藏于 DataFrame 背后的数据源以及作用于 DataFrame 之上的变换进行了针对性的优化,最终达到大幅提升运行时效率的目标。反观 RDD,由于无从得知所存数据元素的具体内部结构,Spark Core 只能在 stage 层面进行简单、通用的流水线优化。

同时,与 Hive 类似,DataFrame 也支持嵌套数据类型(struct、array 和 map)。从 API 易用性的角度上看,DataFrame API 提供的是一套高层的关系操作,比函数式的 RDD API 要更加友好,门槛更低。
在这里插入图片描述
上图直观地体现了 DataFrame 和 RDD 的区别。

左侧的 RDD[Person]虽然以 Person 为类型参数,但 Spark 框架本身不了解 Person 类的内部结构。而右侧的 DataFrame 却提供了详细的结构信息,使得 Spark SQL 可以清楚地知道该数据集中包含哪些列,每列的名称和类型各是什么。
DataFrame 是为数据提供了 Schema 的视图。可以把它当做数据库中的一张表来对待。
DataFrame 也是懒执行的,但性能上比 RDD 要高,主要原因:优化的执行计划,即查询计划通过 Spark catalyst optimiser 进行优化。比如下面一个例子:
在这里插入图片描述
为了说明查询优化,我们来看上图展示的人口数据分析的示例。图中构造了两个DataFrame,将它们 join 之后又做了一次 filter 操作。如果原封不动地执行这个执行计划,最终的执行效率是不高的。因为 join 是一个代价较大的操作,也可能会产生一个较大的数据集。如果我们能将 filter 下推到 join 下方,先对 DataFrame 进行过滤,再 join 过滤后的较小的结果集,便可以有效缩短执行时间。而Spark SQL 的查询优化器正是这样做的。简而言之,逻辑查询计划优化就是一个利用基于关系代数的等价变换,将高成本的操作替换为低成本操作的过程。

在这里插入图片描述

1.5 DataSet 是什么

DataSet 是分布式数据集合。DataSet 是 Spark 1.6 中添加的一个新抽象,是 DataFrame的一个扩展。它提供了 RDD 的优势(强类型,使用强大的 lambda 函数的能力)以及 Spark SQL 优化执行引擎的优点。DataSet 也可以使用功能性的转换(操作 map,flatMap,filter等等)。

➢ DataSet 是 DataFrame API 的一个扩展,是 SparkSQL 最新的数据抽象
➢ 用户友好的 API 风格,既具有类型安全检查也具有 DataFrame 的查询优化特性;
➢ 用样例类来对 DataSet 中定义数据的结构信息,样例类中每个属性的名称直接映射到DataSet 中的字段名称;
➢ DataSet 是强类型的。比如可以有 DataSet[Car],DataSet[Person]。
➢ DataFrame 是 DataSet 的特列,DataFrame=DataSet[Row] ,所以可以通过 as 方法将DataFrame 转换为 DataSet。Row 是一个类型,跟 Car、Person 这些的类型一样,所有的表结构信息都用 Row 来表示。获取数据时需要指定顺序

2. SparkSQL 核心编程

本课件重点学习如何使用 Spark SQL 所提供的DataFrame 和 DataSet 模型进行编程.,以及了解它们之间的关系和转换,关于具体的 SQL 书写不是我们的重点。

2.1 新的起点

Spark Core 中,如果想要执行应用程序,需要首先构建上下文环境对象 SparkContext,Spark SQL 其实可以理解为对 Spark Core 的一种封装,不仅仅在模型上进行了封装,上下文环境对象也进行了封装。

在老的版本中,SparkSQL 提供两种 SQL 查询起始点:一个叫 SQLContext,用于 Spark自己提供的 SQL 查询;一个叫 HiveContext,用于连接 Hive 的查询。

SparkSession 是 Spark 最新的 SQL 查询起始点,实质上是 SQLContext 和 HiveContext的组合,所以在SQLContex 和 HiveContext 上可用的 API 在SparkSession 上同样是可以使用的。SparkSession 内部封装了 SparkContext,所以计算实际上是由 sparkContext 完成的。当我们使用 spark-shell 的时候, spark 框架会自动的创建一个名称叫做 spark 的 SparkSession 对象, 就像我们以前可以自动获取到一个 sc 来表示 SparkContext 对象一样。
在这里插入图片描述

2.2 DataFrame

Spark SQL 的 DataFrame API 允许我们使用 DataFrame 而不用必须去注册临时表或者生成 SQL 表达式。DataFrame API 既有 transformation 操作也有 action 操作。

2.2.1 创建 DataFrame

在 Spark SQL 中 SparkSession 是创建 DataFrame 和执行 SQL 的入口,创建 DataFrame有三种方式:通过Spark 的数据源进行创建;从一个存在的 RDD 进行转换;还可以从 Hive Table 进行查询返回。

  1. 从 Spark 数据源进行创建
    ➢ 查看 Spark 支持创建文件的数据源格式
scala> spark.read
csv format jdbc json load option options orc parquet schema 
table text textFile

➢ 在 spark 的 bin/data 目录中创建 user.json 文件

{"username":"zhangsan","age":20}

➢ 读取 json 文件创建 DataFrame

scala> val df = spark.read.json("data/user.json")
df: org.apache.spark.sql.DataFrame = [age: bigint, username: string]

注意:如果从内存中获取数据,spark 可以知道数据类型具体是什么。如果是数字,默认作为 Int 处理;但是从文件中读取的数字,不能确定是什么类型,所以用 bigint 接收,可以和Long 类型转换,但是和 Int 不能进行转换

➢ 展示结果

+---+--------+
|age|username|
+---+--------+
| 20|zhangsan|
+---+--------+
  1. 从 RDD 进行转换
    在后续章节中讨论
  2. 从 Hive Table 进行查询返回
    在后续章节中讨论

2.2.2 SQL 语法

SQL 语法风格是指我们查询数据的时候使用 SQL 语句来查询,这种风格的查询必须要有临时视图或者全局视图来辅助

  1. 读取 JSON 文件创建 DataFrame
scala> val df = spark.read.json("data/user.json")
df: org.apache.spark.sql.DataFrame = [age: bigint, username: string]
  1. 对 DataFrame 创建一个临时表
scala> df.createOrReplaceTempView("people")
  1. 通过 SQL 语句实现查询全表
scala> val sqlDF = spark.sql("SELECT * FROM people")
sqlDF: org.apache.spark.sql.DataFrame = [age: bigint, name: string]
  1. 结果展示
scala> sqlDF.show
+---+--------+
|age|username|
+---+--------+
| 20|zhangsan|
| 30| lisi|
| 40| wangwu|
+---+--------+

注意:普通临时表是 Session 范围内的,如果想应用范围内有效,可以使用全局临时表。使用全局临时表时需要全路径访问,如:global_temp.people

  1. 对于 DataFrame 创建一个全局表
scala> df.createGlobalTempView("people")
  1. 通过 SQL 语句实现查询全表
scala> spark.sql("SELECT * FROM global_temp.people").show()
+---+--------+
|age|username|
+---+--------+
| 20|zhangsan|
| 30| lisi|
| 40| wangwu|
+---+--------+
scala> spark.newSession().sql("SELECT * FROM global_temp.people").show()
+---+--------+
|age|username|
+---+--------+
| 20|zhangsan|
| 30| lisi|
| 40| wangwu|
+---+--------+

2.2.3 DSL 语法

DataFrame 提供一个特定领域语言(domain-specific language, DSL)去管理结构化的数据。可以在 Scala, Java, Python 和 R 中使用 DSL,使用 DSL 语法风格不必去创建临时视图了

  1. 创建一个 DataFrame
scala> val df = spark.read.json("data/user.json")
df: org.apache.spark.sql.DataFrame = [age: bigint, name: string]
  1. 查看 DataFrame 的 Schema 信息
scala> df.printSchema
root
|-- age: Long (nullable = true)
|-- username: string (nullable = true)
  1. 只查看"username"列数据,
scala> df.select("username").show()
+--------+
|username|
+--------+
|zhangsan|
| lisi|
| wangwu|
+--------+
  1. 查看"username"列数据以及"age+1"数据
    注意:涉及到运算的时候, 每列都必须使用$, 或者采用引号表达式:单引号+字段名
scala> df.select($"username",$"age" + 1).show
scala> df.select('username, 'age + 1).show()
scala> df.select('username, 'age + 1 as "newage").show()
+--------+---------+
|username|(age + 1)|
+--------+---------+
|zhangsan| 21|
| lisi| 31|
| wangwu| 41|
+--------+---------+
  1. 查看"age"大于"30"的数据
scala> df.filter($"age">30).show
+---+---------+
|age| username|
+---+---------+
| 40| wangwu|
+---+---------+
  1. 按照"age"分组,查看数据条数
scala> df.groupBy("age").count.show
+---+-----+
|age|count|
+---+-----+
| 20| 1|
| 30| 1|
| 40| 1|
+---+-----+

2.2.4 RDD 转换为 DataFrame

在 IDEA 中开发程序时,如果需要 RDD 与 DF 或者 DS 之间互相操作,那么需要引入import spark.implicits._

这里的 spark 不是 Scala 中的包名,而是创建的sparkSession 对象的变量名称,所以必须先创建SparkSession 对象再导入。这里的 spark 对象不能使用 var 声明,因为 Scala 只支持val 修饰的对象的引入。
spark-shell 中无需导入,自动完成此操作。

scala> val idRDD = sc.textFile("data/id.txt")
scala> idRDD.toDF("id").show
+---+
| id|
+---+
| 1|
| 2|
| 3|
| 4|
+---+

实际开发中,一般通过样例类将 RDD 转换为 DataFrame

scala> case class User(name:String, age:Int)
defined class User
scala> sc.makeRDD(List(("zhangsan",30),("lisi",40))).map(t=>User(t._1, t._2)).toDF.show
+--------+---+
| name|age|
+--------+---+
|zhangsan| 30|
| lisi| 40|
+--------+---+

2.2.5 DataFrame 转换为 RDD

DataFrame 其实就是对 RDD 的封装,所以可以直接获取内部的 RDD

scala> val df = sc.makeRDD(List(("zhangsan",30),("lisi",40))).map(t=>User(t._1, t._2)).toDF
df: org.apache.spark.sql.DataFrame = [name: string, age: int]
scala> val rdd = df.rdd
rdd:org.apache.spark.rdd.RDD[org.apache.spark.sqL.Row] = MapPartitionsRDD[46] at rdd at <console>:25
scala> val array = rdd.collect
array: Array[org.apache.spark.sql.Row] = Array([zhangsan,30], [lisi,40])

注意:此时得到的 RDD 存储类型为 Row

scala> array(0)
res28: org.apache.spark.sql.Row = [zhangsan,30]
scala> array(0)(0)
res29: Any = zhangsan
scala> array(0).getAs[String]("name")
res30: String = zhangsan

2.3 DataSet

DataSet 是具有强类型的数据集合,需要提供对应的类型信息。

2.3.1 创建 DataSet

1) 使用样例类序列创建 DataSet

scala> case class Person(name: String, age: Long)
defined class Person
scala> val caseClassDS = Seq(Person("zhangsan",2)).toDS()
caseClassDS: org.apache.spark.sql.Dataset[Person] = [name: string, age: Long]
scala> caseClassDS.show
+---------+---+
| name|age|
+---------+---+
| zhangsan| 2|
+---------+---+

2) 使用基本类型的序列创建 DataSet

scala> val ds = Seq(1,2,3,4,5).toDS
ds: org.apache.spark.sql.Dataset[Int] = [value: int]
scala> ds.show
+-----+
|value|
+-----+
| 1|
| 2|
| 3|
| 4|
| 5|
+-----+

注意:在实际使用的时候,很少用到把序列转换成DataSet,更多的是通过RDD来得到DataSet

2.3.2 RDD 转换为 DataSet

SparkSQL 能够自动将包含有 case 类的 RDD 转换成 DataSet,case 类定义了 table 的结构,case 类属性通过反射变成了表的列名。Case 类可以包含诸如 Seq 或者 Array 等复杂的结构。

scala> case class User(name:String, age:Int)
defined class User
scala> sc.makeRDD(List(("zhangsan",30), ("lisi",49))).map(t=>User(t._1, 
t._2)).toDS
res11: org.apache.spark.sql.Dataset[User] = [name: string, age: int]

2.3.3 DataSet 转换为 RDD

DataSet 其实也是对 RDD 的封装,所以可以直接获取内部的 RDD

scala> case class User(name:String, age:Int)
defined class User
scala> sc.makeRDD(List(("zhangsan",30), ("lisi",49))).map(t=>User(t._1, 
t._2)).toDS
res11: org.apache.spark.sql.Dataset[User] = [name: string, age: int]
scala> val rdd = res11.rdd
rdd: org.apache.spark.rdd.RDD[User] = MapPartitionsRDD[51] at rdd at 
<console>:25
scala> rdd.collect
res12: Array[User] = Array(User(zhangsan,30), User(lisi,49))

2.4 DataFrame 和 DataSet 转换

DataFrame 其实是 DataSet 的特例,所以它们之间是可以互相转换的。
➢ DataFrame 转换为 DataSet

scala> case class User(name:String, age:Int)
defined class User
scala> val df = sc.makeRDD(List(("zhangsan",30), 
("lisi",49))).toDF("name","age")
df: org.apache.spark.sql.DataFrame = [name: string, age: int]
scala> val ds = df.as[User]
ds: org.apache.spark.sql.Dataset[User] = [name: string, age: int]

➢ DataSet 转换为 DataFrame

scala> val ds = df.as[User]
ds: org.apache.spark.sql.Dataset[User] = [name: string, age: int]
scala> val df = ds.toDF
df: org.apache.spark.sql.DataFrame = [name: string, age: int]

2.5 RDD、DataFrame、DataSet 三者的关系

在 SparkSQL 中 Spark 为我们提供了两个新的抽象,分别是 DataFrame 和 DataSet。他们和 RDD 有什么区别呢?首先从版本的产生上来看:
➢ Spark1.0 => RDD
➢ Spark1.3 => DataFrame
➢ Spark1.6 => Dataset
如果同样的数据都给到这三个数据结构,他们分别计算之后,都会给出相同的结果。不同是的他们的执行效率和执行方式。在后期的 Spark 版本中,DataSet 有可能会逐步取代 RDD和 DataFrame 成为唯一的 API 接口。

2.5.1 三者的共性

➢ RDD、DataFrame、DataSet 全都是 spark 平台下的分布式弹性数据集,为处理超大型数据提供便利;
➢ 三者都有惰性机制,在进行创建、转换,如 map 方法时,不会立即执行,只有在遇到Action 如 foreach 时,三者才会开始遍历运算;
➢ 三者有许多共同的函数,如 filter,排序等;
➢ 在对 DataFrame 和 Dataset 进行操作许多操作都需要这个包:import spark.implicits._(在创建好 SparkSession 对象后尽量直接导入)
➢ 三者都会根据 Spark 的内存情况自动缓存运算,这样即使数据量很大,也不用担心会内存溢出
➢ 三者都有 partition 的概念
➢ DataFrame 和 DataSet 均可使用模式匹配获取各个字段的值和类型

2.5.2 三者的区别

  1. RDD
    ➢ RDD 一般和 spark mllib 同时使用
    ➢ RDD 不支持 sparksql 操作
  2. DataFrame
    ➢ 与 RDD 和 Dataset 不同,DataFrame 每一行的类型固定为 Row,每一列的值没法直接访问,只有通过解析才能获取各个字段的值
    ➢ DataFrame 与 DataSet 一般不与 spark mllib 同时使用
    ➢ DataFrame 与 DataSet 均支持 SparkSQL 的操作,比如 select,groupby 之类,还能注册临时表/视窗,进行 sql 语句操作
    ➢ DataFrame 与 DataSet 支持一些特别方便的保存方式,比如保存成 csv,可以带上表头,这样每一列的字段名一目了然(后面专门讲解)
  3. DataSet
    ➢ Dataset 和 DataFrame 拥有完全相同的成员函数,区别只是每一行的数据类型不同。
    DataFrame 其实就是 DataSet 的一个特例 type DataFrame = Dataset[Row]
    ➢ DataFrame 也可以叫 Dataset[Row],每一行的类型是 Row,不解析,每一行究竟有哪些字段,各个字段又是什么类型都无从得知,只能用上面提到的 getAS 方法或者共性中的第七条提到的模式匹配拿出特定字段。而 Dataset 中,每一行是什么类型是不一定的,在自定义了 case class 之后可以很自由的获得每一行的信息。

2.5.3 三者的互相转换

在这里插入图片描述

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.coloradmin.cn/o/344183.html

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈,一经查实,立即删除!

相关文章

MVC架构 —— 理解 Dao 层和 Service 层

MVC 框架念叨了千百遍&#xff0c;但是对于它的理解还是停留在概念上。 作为一种经典架构设计典范&#xff0c;MVC 在日新月异的软件行业却能常青数十年&#xff0c;一定有其独特的魅力。 一、Dao 层和 Service 层的概念 Dao 是 Data Access Object &#xff08;数据访问对象&…

FPGA纯verilog实现任意分辨率视频输出显示,高度贴近真实项目,提供工程源码和技术支持

目录1、前言2、视频显示的VESA协议3、VESA协议的bug4、FPGA实现任意分辨率视频输出显示5、FDMA实现数据缓存6、vivado工程详解7、上板调试验证并演示8、福利&#xff1a;工程代码的获取1、前言 本设计使用纯Verilog代码实现&#xff0c;重点在于基于AXI协议的DDR控制器的运用&…

SpringBoot 整合EasyExcel详解

一、概述 Java解析、生成Excel比较有名的框架有Apache poi、jxl。但他们都存在一个严重的问题就是非常的耗内存&#xff0c;poi有一套SAX模式的API可以一定程度的解决一些内存溢出的问题&#xff0c;但POI还是有一些缺陷&#xff0c;比如07版Excel解压缩以及解压后存储都是在内…

内网渗透-src挖掘-互联网打点到内网渗透-2023年2月

1、通过信息搜集&#xff0c;发现目标有一个互联网访问的骑士cms 2、发现该系统骑士cms版本为6.0.20&#xff0c;通过搜索&#xff0c;发现骑士cms < 6.0.48存在任意文件包含漏洞 /Application/Common/Controller/BaseController.class.php 该文件的assign_resume_tpl函数…

字节面试惨败,闭关修炼再战美团(Android 面经~)

作者&#xff1a;王旭 前言 本人从事Android 开发已经有5年了&#xff0c;受末日寒气影响&#xff0c;被迫在家休整&#xff0c;事后第一家选择字节跳动面试&#xff0c;无奈的被面试官虐得“体无完肤”&#xff0c;好在自己并未气馁&#xff0c;于是回家开始回家进行闭关修炼…

使用红黑树模拟实现map和set

在STL的源代码中&#xff0c;map和set的底层原理都是红黑树。但这颗红黑树跟我们单独写的红黑树不一样&#xff0c;它需要改造一下&#xff1a; 改造红黑树 节点的定义 因为map和set的底层都是红黑树。而且map是拥有键值对pair<K,V>的&#xff0c;而set是没有键值对&a…

教育行业需要什么样的数字产品?

数字化转型的浪潮已经席卷了各行各业&#xff0c;不仅出现在互联网、电商、建筑等行业&#xff0c;还应用在了教育行业。数字化的教育ERP软件能够在满足学校需求的基础上&#xff0c;帮助学校完善各类工作流程&#xff0c;提高工作效率。 对于一个拥有多个校区&#xff0c;上万…

ChatGPT 也太火了吧 ...

最近 ChatGPT 太火了&#xff0c;微信指数 ChatGPT 关键词飙升。GitHub 上也不例外&#xff0c;最近热门项目都是 ChatGPT 项目。后续会陆续更新 ChatGPT 好玩的开源项目&#xff0c;本期是本周登上热榜的 Repo&#xff0c;请查收。本期推荐开源项目目录&#xff1a;1. 对 Chat…

ms17-010(永恒之蓝漏洞复现)

✅作者简介&#xff1a;CSDN内容合伙人、信息安全专业在校大学生&#x1f3c6; &#x1f525;系列专栏 &#xff1a;HW-2023-漏洞复现 &#x1f4c3;新人博主 &#xff1a;欢迎点赞收藏关注&#xff0c;会回访&#xff01; &#x1f4ac;舞台再大&#xff0c;你不上台&#xff…

Inception-Resnet-v1、Inception-Resnet-v2学习笔记

Inception-Resnet-v1、Inception-Resnet-v2来自2016年谷歌发表的这篇论文&#xff1a;Inception-v4 Inception-ResNet and the Impact of Residual Connections on Learning&#xff0c;附论文链接&#xff1a; [1602.07261] Inception-v4, Inception-ResNet and the Impact o…

【思维模型】概率思维的价值:找到你的人生算法!打开你的人生格局!实现认知跃迁!

把同样公平的机会放在放在很多人面前,不同的人生算法,会得到迥然不同的结果。 概率思维是什么? 【ChatGPT】概率思维是一种通过使用数学模型来思考和评估不确定性事件的方法。它通过计算不同可能性的概率来预测事件的结果,并评估风险和机会。 概率思维的价值在于它可以帮…

CSS样式表继承和优先级

CSS样式表继承 要想了解css样式表的继承&#xff0c;我们先从文档树&#xff08;HTML DOM&#xff09;开始。文档树由HTML元素组成。 文档树和家族树类似&#xff0c;也有祖先、后代、父亲、孩子和兄弟_。 那么CSS样式表继承指的是&#xff0c;特定的CSS属性向下传递到子孙元…

智能三子棋(人机大战)—— 你会是最终赢家吗?万字讲解让你实现与自己对弈

魔王的介绍&#xff1a;&#x1f636;‍&#x1f32b;️一名双非本科大一小白。魔王的目标&#xff1a;&#x1f92f;努力赶上周围卷王的脚步。魔王的主页&#xff1a;&#x1f525;&#x1f525;&#x1f525;大魔王.&#x1f525;&#x1f525;&#x1f525; ❤️‍&#x1…

2023年湖北建设厅七大员八大员报名怎么收费呢?

建设厅七大员八大员全国统一报名网站&#xff0c;证书全国通用&#xff0c;无需调转&#xff0c;这点还是很方便的&#xff0c;所有在湖北考的证书全国都能用呢。 八大员报考机构很多&#xff0c;收费也是层次不齐&#xff0c;这里需要提醒大家注意的是&#xff0c;咨询八大员的…

如何持续架构治理?我们和 ChatGPT 聊了一会?

在上周的 QCon 北京 2022 大会上&#xff0c;我和我的同事黄雨青一起分享了《组织级架构治理的正确方式》&#xff0c;以帮助开发人员对组织级架构治理体系全貌一瞥&#xff0c;并厘清治理工具的设计思路和核心功能内容。结合我们在 ArchGuard 的探索经验&#xff0c;我们&…

自有APP上如何运行小游戏?

近年来小程序游戏迎来了爆发式增长。微信、支付宝、抖音等各大平台小程序游戏愈加丰富&#xff0c;你是否也让自己的App也拥有运行丰富的小游戏的能力&#xff1f;今天就来带大家看看如何实现。 我们先来看看各互联网巨头关于小游戏生态的特征&#xff1a; 「微信」 率先推出…

open3d点云配准函数registration_icp

文章目录基本原理open3d调用绘图基本原理 ICP, 即Iterative Closest Point, 迭代点算法。 ICP算法有多种形式&#xff0c;其中最简单的思路就是比较点与点之间的距离&#xff0c;对于点云P{pi},Q{qi}P\{p_i\}, Q\{q_i\}P{pi​},Q{qi​}而言&#xff0c;如果二者是同一目标&am…

如何将一张纹理图贴在模型上

前言 小伙伴们是否有过这样的场景:看到一个精美的3D模型&#xff0c;很想知道它是如何被创作出来的&#xff1f;于是开始了一番搜索引擎查找之后&#xff0c;得知需要建模工具来完成&#xff0c;例如3D Max、Maya、Blender、Photoshop。那么本篇就使用这些工具来完成一个精美的…

Redis【包括Redis 的安装+本地远程连接】

Redis 一、为什么要用缓存&#xff1f; 缓存定义 缓存是一个高速数据交换的存储器&#xff0c;使用它可以快速的访问和操作数据。 程序中的缓存 在我们程序中&#xff0c;如果没有使用缓存&#xff0c;程序的调用流程是直接访问数据库的&#xff1b; 如果多个程序调用一个数…

如何在原始的认知上找回自己

认知、欲望加恐惧&#xff0c;这三种要素在我们对一个事物的判断中都在起作用&#xff0c;只不过配比不一样&#xff0c;导致你的判断不一样。我们通常以为有了认知能力&#xff0c;就产生了认知&#xff0c;就如同面前有一个东西&#xff0c;你用照相机拍下来就成了一张照片—…