【Unity3D】Shader常量、变量、结构体、函数

news2024/9/24 11:27:56

1 源码路径

        Unity Shader 常量、变量、结构体、函数一般可以在 Unity Editor 安装目录下面的【Editor\Data\CGIncludes\UnityShader】目录下查看源码,主要源码文件如下:

  • UnityCG.cginc
  • UnityShaderUtilities.cginc
  • UnityShaderVariables.cginc

2 Shader 常量

#define UNITY_PI            3.14159265359f
#define UNITY_TWO_PI        6.28318530718f
#define UNITY_FOUR_PI       12.56637061436f
#define UNITY_INV_PI        0.31830988618f
#define UNITY_INV_TWO_PI    0.15915494309f
#define UNITY_INV_FOUR_PI   0.07957747155f
#define UNITY_HALF_PI       1.57079632679f
#define UNITY_INV_HALF_PI   0.636619772367f

3 Shader 变量

        1)时间变量

// Time (t = time since current level load) values from Unity
float4 _Time; // (t/20, t, t*2, t*3)
float4 _SinTime; // sin(t/8), sin(t/4), sin(t/2), sin(t)
float4 _CosTime; // cos(t/8), cos(t/4), cos(t/2), cos(t)
float4 unity_DeltaTime; // dt, 1/dt, smoothdt, 1/smoothdt

        2)相机和光源的世界坐标

float3 _WorldSpaceCameraPos; // 相机的世界坐标
half4 _WorldSpaceLightPos0; // 光源的世界坐标

        3)投影参数

// x = 1 or -1 (-1 if projection is flipped)
// y = near plane
// z = far plane
// w = 1/far plane
float4 _ProjectionParams;

        4)屏幕参数

// x = width
// y = height
// z = 1 + 1.0/width
// w = 1 + 1.0/height
float4 _ScreenParams;

        5)MVP 矩阵

float4x4 UNITY_MATRIX_M, unity_ObjectToWorld; // [模型空间->世界空间]的变换矩阵M
float4x4 UNITY_MATRIX_V, unity_MatrixV; // [世界空间->观察空间]的变换矩阵V
float4x4 UNITY_MATRIX_P, glstate_matrix_projection; // [观察空间->裁剪空间]的变换矩阵P
float4x4 UNITY_MATRIX_MV, unity_MatrixMV; // [模型空间->观察空间]的变换矩阵MV
float4x4 UNITY_MATRIX_VP, unity_MatrixVP; // [世界空间->裁剪空间]的变换矩阵VP
float4x4 UNITY_MATRIX_MVP, unity_MatrixMVP; // [模型空间->裁剪空间]的变换矩阵MVP
float4x4 UNITY_MATRIX_I_V, unity_MatrixInvV; // V矩阵的逆矩阵
float4x4 UNITY_MATRIX_T_MV, unity_MatrixTMV; // MV矩阵的转置
float4x4 UNITY_MATRIX_IT_MV, unity_MatrixITMV; // MV矩阵的逆转矩阵
float4x4 unity_WorldToObject; // [世界空间->模型空间]的变换矩阵M

        说明:unity_ObjectToWorld 与 unity_WorldToObject 互为逆矩阵。

4 Shader 结构体

        1)appdata_base

struct appdata_base {
    float4 vertex : POSITION; // 局部坐标系下顶点坐标
    float3 normal : NORMAL; // 局部坐标系下法线向量
    float4 texcoord : TEXCOORD0; // 纹理坐标
    UNITY_VERTEX_INPUT_INSTANCE_ID
};

        2)appdata_tan

struct appdata_tan {
    float4 vertex : POSITION; // 局部坐标系下顶点坐标
    float4 tangent : TANGENT; // 局部坐标系下切线向量
    float3 normal : NORMAL; // 局部坐标系下法线向量
    float4 texcoord : TEXCOORD0; // 纹理坐标
    UNITY_VERTEX_INPUT_INSTANCE_ID
};

        3)appdata_full

struct appdata_full {
    float4 vertex : POSITION; // 局部坐标系下顶点坐标
    float4 tangent : TANGENT; // 局部坐标系下切线向量
    float3 normal : NORMAL; // 局部坐标系下法线向量
    float4 texcoord : TEXCOORD0; // 纹理坐标0
    float4 texcoord1 : TEXCOORD1; // 纹理坐标1
    float4 texcoord2 : TEXCOORD2; // 纹理坐标2
    float4 texcoord3 : TEXCOORD3; // 纹理坐标3
    fixed4 color : COLOR; // 顶点颜色
    UNITY_VERTEX_INPUT_INSTANCE_ID
};

        4)appdata_img

struct appdata_img
{
    float4 vertex : POSITION; // 局部坐标系下顶点坐标
    half2 texcoord : TEXCOORD0; // 纹理坐标
    UNITY_VERTEX_INPUT_INSTANCE_ID
};

        5)v2f_img

struct v2f_img
{
    // 作为顶点着色器输出时, pos指裁剪坐标系下的坐标; 作为片元着色器输入时, pos指屏幕坐标系下的坐标
    float4 pos : SV_POSITION;
    half2 uv : TEXCOORD0; // 纹理坐标
    UNITY_VERTEX_INPUT_INSTANCE_ID
    UNITY_VERTEX_OUTPUT_STEREO
};

        说明:作为顶点着色器输出时, pos指裁剪坐标系下的坐标; 作为片元着色器输入时, pos指屏幕坐标系下的坐标。

5 Shader 函数

5.1 基础函数

        1)数值计算 

sign(x)、abs(x) // 符号、绝对值
min(a, b)、max(a, b) // 最值函数
ceil(x)、floor(x)、round(x) // 取整函数
frac(x) // 取小数部分
fmod(x, y) // 取余数
rap(x) // 倒数(1/x)
sqrt(x)、pow(x) // 幂函数
exp(x)、exp2(x) // 指数函数(e^x、2^x)
log(x)、log10(x)、log2(x) // 对数函数
degrees(x)、radians(x) // 角度转换函数
sin(x)、cos(x)、tan(x)、asin(x)、acos(x)、atan(x) // 三角函数
sinh(x)、cosh(x)、tanh(x) // 双曲线函数
saturate(x) // 将x约束在0和1之间, 超过边界就取边界值
clamp(x, min, max) // 将x约束在min和max之间, 超过边界就取边界值
smoothstep (min, max, x) // 平滑比例, 公式: k=saturate((x-min)/(max-min)), y=k*k*(3-2*k)
lerp(a, b, f) // 插值, 公式: y=x+f*(y-x), a、b可以是向量

        2)向量计算

all(vec) // 如果vec中每个分量都是非零的则返回true, 否则返回false
any(vec) // 如果vec中存在一个分量是非零的则返回true, 否则返回false
distance(pos1, pos2) // 计算pos1与pos2之间的距离
length(vec) // 计算向量的模长
normalize(vec) // 计算向量的单位向量
dot(vec1, vec2) // 向量点乘
cross(vec1, vec2) // 向量叉乘
reflect(i, n) // 根据入射向量和法线向量计算反射向量

        3)矩阵计算

mul(M, N)、mul(M, v), mul(v, M) // M*N、M*v、M'*v
determinant(M) // 计算矩阵的行列式
transpose(M) // 矩阵转置

        4)纹理计算

tex2D(sampler2D, uv_Tex) // 查询纹理坐标对应的纹理值
UnpackNormal(color) // 根据法线纹理解析法线向量

5.2 坐标和向量变换

        1)坐标变换

// 模型空间->观察空间
float3 UnityObjectToViewPos(float3 pos) // mul(UNITY_MATRIX_MV, float4(pos, 1.0)).xyz
float3 UnityObjectToViewPos(float4 pos) // UnityObjectToViewPos(pos.xyz)
// 模型空间->裁剪空间
float4 UnityObjectToClipPos(float3 pos) // mul(UNITY_MATRIX_MVP, float4(pos, 1.0))
float4 UnityObjectToClipPos(float4 pos) // UnityObjectToClipPos(pos.xyz)
// 世界空间->观察空间
float3 UnityWorldToViewPos(float3 pos) // mul(UNITY_MATRIX_V, float4(pos, 1.0)).xyz
// 世界空间->裁剪空间
float4 UnityWorldToClipPos(float3 pos) // mul(UNITY_MATRIX_VP, float4(pos, 1.0))
// 观察空间->裁剪空间
float4 UnityViewToClipPos(float3 pos) // mul(UNITY_MATRIX_P, float4(pos, 1.0))

        2)向量变换

// 局部空间->世界空间
float3 UnityObjectToWorldDir(float3 dir) // normalize(mul((float3x3)unity_ObjectToWorld, dir))
// 世界空间->局部空间
float3 UnityWorldToObjectDir(float3 dir) // normalize(mul((float3x3)unity_WorldToObject, dir))

        3)法线变换

// 局部空间->世界空间
float3 UnityObjectToWorldNormal(float3 norm) {
#ifdef UNITY_ASSUME_UNIFORM_SCALING // 统一缩放(x、y、z分量缩放系数一致)
    return UnityObjectToWorldDir(norm); // normalize(mul((float3x3)unity_ObjectToWorld, norm))
#else
    return normalize(mul(norm, (float3x3)unity_WorldToObject)); // mul(IT_M, norm) => mul(norm, I_M)
#endif
}

        法线由切线计算而来,在局部空间中 A 点的切线向量为 v1,法线向量为 n1,经过模型变换(矩阵 M)后,切线向量为 v2,法线向量为 n2,假设法线向量的变换矩阵为 G,因此存在以下关系:

        Unity 中线性变换主要有平移、旋转、缩放,由于向量不受平移变换影响,因此,对于法线向量而言,只受旋转和缩放影响。

  • 当 M 只包含旋转变换时,M 是正交矩阵,M^{-1} = M^T,因此 G = M;
  • 当 M 只包含统一缩放变换时,M = k·E,因此 G = 1/k·E = 1/(k^2)·M,由于法线向量只需要方向,后面会进行归一化,因此可以简写 G = M;
  • 当 M 只包含旋转变换和统一缩放变换时,G = 1/(k^2)·M,由于法线向量只需要方向,后面会进行归一化,因此可以简写 G = M;

        4)其他变换

// 观察空间->裁剪空间
float2 TransformViewToProjection (float2 v) // mul((float2x2)UNITY_MATRIX_P, v)
float3 TransformViewToProjection (float3 v) // mul((float3x3)UNITY_MATRIX_P, v)

5.3 计算指向相机和光源的向量 

        1)计算顶点指向相机的向量

// _WorldSpaceCameraPos.xyz - worldPos
float3 ObjSpaceViewDir(float4 v) // 输入: 局部坐标, 输出: 局部坐标
float3 WorldSpaceViewDir(float4 localPos) // 输入: 局部坐标, 输出: 世界坐标
float3 UnityWorldSpaceViewDir(float3 worldPos) // 输入: 世界坐标, 输出: 世界坐标

        2)计算顶点指向光源的向量

// mul(unity_WorldToObject, _WorldSpaceLightPos0).xyz - v.xyz
float3 ObjSpaceLightDir(float4 v) // 输入: 局部坐标, 输出: 局部坐标
float3 WorldSpaceLightDir(float4 localPos) // 输入: 局部坐标, 输出: 世界坐标
float3 UnityWorldSpaceLightDir(float3 worldPos) // 输入: 世界坐标, 输出: 世界坐标

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.coloradmin.cn/o/340790.html

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈,一经查实,立即删除!

相关文章

大数据技术架构(组件)33——Spark:Spark SQL--Join Type

2.2.2、Join Type2.2.2.1、Broadcast Hash Join (Not Shuffled)就是常说的MapJoin,join操作在map端进行的。场景:join的其中一张表要很小,可以放到Driver或者Executor端的内存中。原理:1、将小表的数据广播到所有的Executor端,利用collect算子…

微信小程序 数据绑定 Mustache语法怎么使用?

1.数据绑定的基本原则 ①在data中定义数据 ②在WXML中使用数据、 在页面对应的 .js 文件中。把数据定义到data对象中即可 在WXML文件中使用{{}}两个花括号加变量名称进行调用 以上使用方法,下面我么来实操 Mustache语法主要使用场景如下: 文本内容绑定 组件属性绑定…

Service

目录 文章目录目录本节实战1、Service1.Service概念2.Service存在的意义3.Pod与Service的关系2、三种IP3、定义 Service4、kube-proxy1.iptables2.ipvsiptables vs ipvs5、Service常见类型1.ClusterIP2.NodePort3.LoadBalancer4.ExternalName5.externalIPs6、Endpoints 与 Endp…

Java基础常见面试题(三)

String 字符型常量和字符串常量的区别? 形式上: 字符常量是单引号引起的一个字符,字符串常量是双引号引起的若干个字符; 含义上: 字符常量相当于一个整型值( ASCII 值),可以参加表达式运算;字符串常量代表一个地址值…

STC15读取内部ID示例程序

STC15读取内部ID示例程序🎉本案例基于STC15F2K60S2为验证对象。 📑STC15 ID序列介绍 STC15系列STC最新一代STC15系列单片机出厂时都具有全球唯一身份证号码(ID号)。最新STC15系列单片机的程序存储器的最后7个字节单元的值是全球唯一ID号,用…

使用阿里云IoT Studio建立物模型可视化界面

使用阿里云IoT Studio建立物模型可视化界面 上一篇文章介绍了如何使用ESP-01S上报数据到物模型:https://blog.csdn.net/weixin_46251230/article/details/128996719 这次使用阿里云IoT Studio建立物模型的Web页面 阿里云IoT Studio: https://studio.i…

02 图像通道处理

1 通道提取与合并 在数字图像处理中,图像通道是指一个图像中的颜色信息被分离为不同的颜色分量。常见的图像通道包括RGB通道、灰度通道、HSV通道等。 RGB通道是指将图像分离为红色、绿色和蓝色三个颜色通道,每个通道表示相应颜色的亮度。这种方式是最常…

RuntimeError: CUDA out of memory

今天在训练模型的时候突然报了显存不够的问题,然后分析了一下,找到了解决的办法,这里记录一下,方便以后查阅。 注:以下的解决方案是在模型测试而不是模型训练时出现这个报错的! RuntimeError: CUDA out of…

基于JavaEE的智能化跨境电子商务平台的设计

技术:Java、JSP、框架等摘要:伴随着近年来互联网的迅猛发展,网上零售逐渐成为了一种影响广泛、方便快捷的购物渠道。我国网上零售业发展的步伐很快。在如今经济全球化的影响下,消费者的网购行为趋于开放化、多元化,对于…

设计模式-中介者模式详解

定义 中介模式的英文翻译是 Mediator Design Pattern。在 GoF 中的《设计模式》一书中,它是这样定义的: Mediator pattern defines a separate (mediator) object that encapsulates the interaction between a set of objects and the objects delega…

chatGPT都可以干什么呢?来一睹风采吧

文章目录1. 写代码2. 写文案3. 写剧本4. 写歌诗5. 写报告6. 查公式7. 写对联8. 写文章9. 做表格10. 做计划11. 等等1. 写代码 2. 写文案 3. 写剧本 4. 写歌诗 5. 写报告 这妥妥的翻译文,数据完全不对。 6. 查公式 傅里叶变换的时域性质有如下几点: 对…

Android 内存优化(基础轮)必看~

本次分享主要分为五个部分内容,第一部分内容是 5W2H 分析内存优化,第二部分内容是内存管理机制,第三部分内容是内存优化 SOP,第四部分内容是 内存优化指导原则, 最后一部分内容是总结与展望。 如果学完内存优化的基础论…

webgl深入理解视图矩阵

文章目录前言三角形构成三维物体视点、目标、正方向视图矩阵辅助函数:归一化、向量差、点积、叉积视图矩阵的数学表示与使用视图矩阵构建三维世界注意前言 在前面的学习中,已经得知了webgl是如何绘制二维图形,并进行仿射变换(矩阵…

mysql的架构图

Mysql逻辑架构图主要分三层:1) 第一层负责连接处理,授权认证,安全等等每个客户端连接都会在服务器进程中拥有一个线程,服务器维护了一个线程池,因此不需要为每一个新建的连接创建或者销毁线程。当客户端连接到Mysql服务…

基于JavaEE的“三味”书屋网上售书系统

技术:Java、JSP等摘要:美国最先提出Internet的概念,如今,全球各地的人们纷纷加入到这个网络行列, 使 Internet 真正走向全球化。随着用户、网民越来越多,网络的范围也愈来愈大,领域也慢慢走向了多元化,一体化 。“三味”书屋设计就是网络浪潮…

GORM设计原理和实践(七)——GORM

文章目录一、重点内容:1、GROM设计原理2、GROM配置3、GROM使用即CRUD二、详细知识点介绍:1、GORM设计原理图2、SQL是怎么生成的3、GROM配置开启go model设置go model输入代理:导入依赖:4、GROM操作初体验代码:5、模型定…

【Shell1】shell语法,ssh/build/scp/upgrade,环境变量,自动升级bmc

文章目录1.shell语法:shell是用C语言编写的程序,是用户使用Linux的桥梁,硬件>内核(os)>shell>文件系统1.1 变量:readonly定义只读变量,unset删除变量1.2 函数:shell脚本传递的参数中包含空格&…

app逆向篇之安卓模拟器环境搭建

前言 本教程适配:安卓7以上的安卓模拟器(包括雷电9等安卓9的模拟器) 准备工具 雷电模拟器面具debug版LSPosed 正式步骤 安装雷电模拟器,这里怎么安装就不需要说了吧安装好雷电模拟器之后应该能够在桌面上看到两个图标,如下: …

分页和mmap

文章目录一、内存分页1、基本概念2、分页机制下,虚拟地址和物理地址是如何映射的?3、快表(TLB)二、mmap基本原理和分类一、内存分页 1、基本概念 CPU并不是直接访问物理内存地址,而是通过虚拟地址空间来间接的访问物理内存地址。 页&#x…

CSS ~ 从入门到入坑。

CSS ~ 从入门到入坑。 文章目录CSS ~ 从入门到入坑。what。css 三种实现方式。选择器。id 选择器 > class 选择器 > 标签选择器。标签选择器。类选择器。id 选择器。层次选择器。后代选择器。子选择器。相邻兄弟选择器。通用选择器。结构伪类选择器。属性选择器。字体风格…