元学习(Meta Learning)最全论文、视频、书籍资源整理

news2024/12/26 12:21:51

Meta Learning,叫做元学习或者 Learning to Learn 学会学习,包括Zero-Shot/One-Shot/Few-Shot 学习,模型无关元学习(Model Agnostic Meta Learning)和元强化学习(Meta Reinforcement Learning)。元学习是人工智能领域,继深度学习是人工智能领域,继深度学习 -> 深度强化学习、生成对抗之后,又一个重要的研究分支,也是是近期的研究热点,加州伯克利大学在这方面做了大量工作。

本文详细整理了元学习相关的经典文章、代码、书籍、博客、视频教程、数据集等其他资源,提供给需要的朋友。

内容整理自网络,资源原地址:https://github.com/ZHANGHeng19931123/awesome-video-object-detection

目录

经典论文和代码

书籍

博客

视频教程

数据集

论坛集合

知名研究者

经典论文和代码

资源详细列表如下。

Zero-Shot / One-Shot / Few-Shot 学习

Siamese Neural Networks for One-shot Image Recognition, (2015), Gregory Koch, Richard Zemel, Ruslan Salakhutdinov.

Prototypical Networks for Few-shot Learning, (2017), Jake Snell, Kevin Swersky, Richard S. Zemel.

Gaussian Prototypical Networks for Few-Shot Learning on Omniglot (2017), Stanislav Fort.

Matching Networks for One Shot Learning, (2017), Oriol Vinyals, Charles Blundell, Timothy Lillicrap, Koray Kavukcuoglu, Daan Wierstra.

Learning to Compare: Relation Network for Few-Shot Learning, (2017), Flood Sung, Yongxin Yang, Li Zhang, Tao Xiang, Philip H.S. Torr, Timothy M. Hospedales.

One-shot Learning with Memory-Augmented Neural Networks, (2016), Adam Santoro, Sergey Bartunov, Matthew Botvinick, Daan Wierstra, Timothy Lillicrap.

Optimization as a Model for Few-Shot Learning, (2016), Sachin Ravi and Hugo Larochelle.

An embarrassingly simple approach to zero-shot learning, (2015), B Romera-Paredes, Philip H. S. Torr.

Low-shot Learning by Shrinking and Hallucinating Features, (2017), Bharath Hariharan, Ross Girshick.

Low-shot learning with large-scale diffusion, (2018), Matthijs Douze, Arthur Szlam, Bharath Hariharan, Hervé Jégou.

Low-Shot Learning with Imprinted Weights, (2018), Hang Qi, Matthew Brown, David G. Lowe.

One-Shot Video Object Segmentation, (2017), S. Caelles and K.K. Maninis and J. Pont-Tuset and L. Leal-Taixe' and D. Cremers and L. Van Gool.

One-Shot Learning for Semantic Segmentation, (2017), Amirreza Shaban, Shray Bansal, Zhen Liu, Irfan Essa, Byron Boots.

Few-Shot Segmentation Propagation with Guided Networks, (2018), Kate Rakelly, Evan Shelhamer, Trevor Darrell, Alexei A. Efros, Sergey Levine.

Few-Shot Semantic Segmentation with Prototype Learning, (2018), Nanqing Dong and Eric P. Xing.

Dynamic Few-Shot Visual Learning without Forgetting, (2018), Spyros Gidaris, Nikos Komodakis.

Feature Generating Networks for Zero-Shot Learning, (2017), Yongqin Xian, Tobias Lorenz, Bernt Schiele, Zeynep Akata.

Meta-Learning Deep Visual Words for Fast Video Object Segmentation, (2019), Harkirat Singh Behl, Mohammad Najafi, Anurag Arnab, Philip H.S. Torr.

模型无关元学习

(Model Agnostic Meta Learning)

Model-Agnostic Meta-Learning for Fast Adaptation of Deep Networks, (2017), Chelsea Finn, Pieter Abbeel, Sergey Levine.

Adversarial Meta-Learning, (2018), Chengxiang Yin, Jian Tang, Zhiyuan Xu, Yanzhi Wang.

On First-Order Meta-Learning Algorithms, (2018), Alex Nichol, Joshua Achiam, John Schulman.

Meta-SGD: Learning to Learn Quickly for Few-Shot Learning, (2017), Zhenguo Li, Fengwei Zhou, Fei Chen, Hang Li.

Gradient Agreement as an Optimization Objective for Meta-Learning, (2018), Amir Erfan Eshratifar, David Eigen, Massoud Pedram.

Gradient-Based Meta-Learning with Learned Layerwise Metric and Subspace, (2018), Yoonho Lee, Seungjin Choi.

A Simple Neural Attentive Meta-Learner, (2018), Nikhil Mishra, Mostafa Rohaninejad, Xi Chen, Pieter Abbeel.

Personalizing Dialogue Agents via Meta-Learning, (2019), Zhaojiang Lin, Andrea Madotto, Chien-Sheng Wu, Pascale Fung.

How to train your MAML, (2019), Antreas Antoniou, Harrison Edwards, Amos Storkey.

Learning to learn by gradient descent by gradient descent, (206), Marcin Andrychowicz, Misha Denil, Sergio Gomez, Matthew W. Hoffman, David Pfau, Tom Schaul, Brendan Shillingford, Nando de Freitas.

Unsupervised Learning via Meta-Learning, (2019), Kyle Hsu, Sergey Levine, Chelsea Finn.

Few-Shot Image Recognition by Predicting Parameters from Activations, (2018), Siyuan Qiao, Chenxi Liu, Wei Shen, Alan Yuille.

One-Shot Imitation from Observing Humans via Domain-Adaptive Meta-Learning, (2018), Tianhe Yu, Chelsea Finn, Annie Xie, Sudeep Dasari, Pieter Abbeel, Sergey Levine,

MetaGAN: An Adversarial Approach to Few-Shot Learning, (2018), ZHANG, Ruixiang and Che, Tong and Ghahramani, Zoubin and Bengio, Yoshua and Song, Yangqiu.

Fast Parameter Adaptation for Few-shot Image Captioning and Visual Question Answering,(2018), Xuanyi Dong, Linchao Zhu, De Zhang, Yi Yang, Fei Wu.

CAML: Fast Context Adaptation via Meta-Learning, (2019), Luisa M Zintgraf, Kyriacos Shiarlis, Vitaly Kurin, Katja Hofmann, Shimon Whiteson.

Meta-Learning for Low-resource Natural Language Generation in Task-oriented Dialogue Systems, (2019), Fei Mi, Minlie Huang, Jiyong Zhang, Boi Faltings.

MIND: Model Independent Neural Decoder, (2019), Yihan Jiang, Hyeji Kim, Himanshu Asnani, Sreeram Kannan.

Toward Multimodal Model-Agnostic Meta-Learning, (2018), Risto Vuorio, Shao-Hua Sun, Hexiang Hu, Joseph J. Lim.

Alpha MAML: Adaptive Model-Agnostic Meta-Learning, (2019), Harkirat Singh Behl, Atılım Güneş Baydin, Philip H. S. Torr.

Online Meta-Learning, (2019), Chelsea Finn, Aravind Rajeswaran, Sham Kakade, Sergey Levine.

元强化学习

(Meta Reinforcement Learning)

Generalizing Skills with Semi-Supervised Reinforcement Learning, (2017), Chelsea Finn, Tianhe Yu, Justin Fu, Pieter Abbeel, Sergey Levine.

Guided Meta-Policy Search, (2019), Russell Mendonca, Abhishek Gupta, Rosen Kralev, Pieter Abbeel, Sergey Levine, Chelsea Finn.

End-to-End Robotic Reinforcement Learning without Reward Engineering, (2019), Avi Singh, Larry Yang, Kristian Hartikainen, Chelsea Finn, Sergey Levine.

Efficient Off-Policy Meta-Reinforcement Learning via Probabilistic Context Variables, (2019), Kate Rakelly, Aurick Zhou, Deirdre Quillen, Chelsea Finn, Sergey Levine.

Task-Agnostic Dynamics Priors for Deep Reinforcement Learning, (2019), Yilun Du, Karthik Narasimhan.

Meta Reinforcement Learning with Task Embedding and Shared Policy,(2019), Lin Lan, Zhenguo Li, Xiaohong Guan, Pinghui Wang.

NoRML: No-Reward Meta Learning, (2019), Yuxiang Yang, Ken Caluwaerts, Atil Iscen, Jie Tan, Chelsea Finn.

Actor-Critic Algorithms for Constrained Multi-agent Reinforcement Learning, (2019), Raghuram Bharadwaj Diddigi, Sai Koti Reddy Danda, Prabuchandran K. J., Shalabh Bhatnagar.

Adaptive Guidance and Integrated Navigation with Reinforcement Meta-Learning, (2019), Brian Gaudet, Richard Linares, Roberto Furfaro.

Watch, Try, Learn: Meta-Learning from Demonstrations and Reward, (2019), Allan Zhou, Eric Jang, Daniel Kappler, Alex Herzog, Mohi Khansari, Paul Wohlhart, Yunfei Bai, Mrinal Kalakrishnan, Sergey Levine, Chelsea Finn.

Options as responses: Grounding behavioural hierarchies in multi-agent RL, (2019), Alexander Sasha Vezhnevets, Yuhuai Wu, Remi Leblond, Joel Z. Leibo.

Learning latent state representation for speeding up exploration, (2019), Giulia Vezzani, Abhishek Gupta, Lorenzo Natale, Pieter Abbeel.

Beyond Exponentially Discounted Sum: Automatic Learning of Return Function, (2019), Yufei Wang, Qiwei Ye, Tie-Yan Liu.

Learning Efficient and Effective Exploration Policies with Counterfactual Meta Policy, (2019), Ruihan Yang, Qiwei Ye, Tie-Yan Liu.

Dealing with Non-Stationarity in Multi-Agent Deep Reinforcement Learning, (2019), Georgios Papoudakis, Filippos Christianos, Arrasy Rahman, Stefano V. Albrecht.

Learning to Discretize: Solving 1D Scalar Conservation Laws via Deep Reinforcement Learning, (2019), Yufei Wang, Ziju Shen, Zichao Long, Bin Dong.

书籍

Hands-On Meta Learning with Python: Meta learning using one-shot learning, MAML, Reptile, and Meta-SGD with TensorFlow, (2019), Sudharsan Ravichandiran.

博客

Berkeley Artificial Intelligence Research blog

Meta-Learning: Learning to Learn Fast

Meta-Reinforcement Learning

How to train your MAML: A step by step approach

An Introduction to Meta-Learning

From zero to research — An introduction to Meta-learning

What’s New in Deep Learning Research: Understanding Meta-Learning

视频教程

Chelsea Finn: Building Unsupervised Versatile Agents with Meta-Learning

Sam Ritter: Meta-Learning to Make Smart Inferences from Small Data

Model Agnostic Meta Learning by Siavash Khodadadeh

Meta Learning by Siraj Raval

Meta Learning by Hugo Larochelle

Meta Learning and One-Shot Learning

数据集

最常用的数据集列表:

Omniglot

mini-ImageNet

ILSVRC

FGVC aircraft

Caltech-UCSD Birds-200-2011

Check several other datasets by Google here.

研讨会

MetaLearn 2017

MetaLearn 2018

MetaLearn 2019

知名研究者

Chelsea Finn, UC Berkeley

Pieter Abbeel, UC Berkeley

Erin Grant, UC Berkeley

Raia Hadsell, DeepMind

Misha Denil, DeepMind

Adam Santoro, DeepMind

Sachin Ravi, Princeton University

David Abel, Brown University

Brenden Lake, Facebook AI Research

往期精品内容推荐

Ian Goodfellow访谈实录

全网最具有挑战的NLP训练营是什么样的?

ICLR 2019计算机视觉、NLP、图模型、对抗学习、表示学习和元学习最新技术分享

《自动化机器学习:方法,系统和挑战》-最新版-免费下载

【干货】史上最全的PyTorch学习资源汇总

从入门到精通-Tensorflow深度强化学习课程

深度学习与计算机视觉任务应用综述

自动驾驶系统历史最全解析及行业最新资讯分析

机器学习圣经《模式识别与机器学习(PRML)-2018》pdf分享

好书推荐-《深度学习基础-构建下一代机器学习算法》免费下载

吴恩达-中文完整版《Mechine Learning Yearning》分享

深度学习工业级部署实践:基于Spark部署Tensorflow深度学习模型

NLP圣经《自然语言处理综述》2018最新版推荐

Geoffrey Hinton-AI的革命与未来

合成注意力推理神经网络-Christopher Manning-ICLR2018

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.coloradmin.cn/o/340375.html

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈,一经查实,立即删除!

相关文章

Redis基础篇

Redis基础篇 来自黑马的redis课程的笔记 【黑马程序员Redis入门到实战教程,深度透析redis底层原理redis分布式锁企业解决方案黑马点评实战项目】 目录Redis基础篇一、初识Redis1.安装2. 数据结构二、Redis常见命令1. Redis通用命令2. string类型2.1 key的层级格式…

【成为架构师课程系列】预备架构 Pre-Architecture 的故事

目录 前言 Pre-architecture的故事 Pre-architecture 核心“四步法” 需求结构化 架构约束

1行Python代码去除图片水印,网友:一干二净

大家好,这里是程序员晚枫。 最近小明在开淘宝店(店名:爱吃火锅的少女),需要给自己的原创图片加水印,于是我上次给她开发了增加水印的功能:图片加水印,保护原创图片,一行…

伏并网低电压穿越技术

国内光伏并网低电压穿越要求 略: 低电压穿越方法 当前,光伏电站实现低电压穿越可通过两种方式,即增加硬件设备或者改变控制策略。本节对基于储能设备、基于无功补偿设备、基于无功电流电压支撑控制策略三种实现LVRT的典型方法进行介绍。 …

【MT7628】开发环境搭建-Fedora12一步一步设置共享文件夹

1.按照下图操作,打开设置界面 2.点击设置,弹出如下对话框

【博客620】prometheus如何优化远程读写的性能

prometheus如何优化远程读写的性能 场景 为了解决prometheus本地存储带来的单点问题,我们一般在高可用监控架构中会使用远程存储,并通过配置prometheus的remote_write和remote_read来对接 远程写优化:remote_write 远程写的原理&#xff1a…

Springboot扩展点之@PostConstruct

前言postContruct全限定类名是javax.annotation.PostConstruct,可以看出来其本身不是Spring定义的注解,但是Spring提供了具体的实现,所以这篇文章主要分析的是PostConstruct在Spring项目开发中的功能特性、实现方式和基本工作原理。功能特性从…

Linux c编程之Wireshark

Wireshark是一个网络报文分析软件,是网络应用问题分析必不可少的工具软件。网络管理员可以使用wireshark排查网络问题。程序开发人员可以用来分析应用协议、定位分析应用问题。无论是网络应用程序开发人员、测试人员、部署人员、技术支持人员,掌握wireshark的使用对于分析网络…

【LeetCode】每日一题(2)

目录 题目:1138. 字母板上的路径 - 力扣(Leetcode) 题目的接口: 解题思路: 代码: 过啦!!! 写在最后: 题目:1138. 字母板上的路径 - 力扣&am…

Python-项目实战--贪吃蛇小游戏-游戏框架搭建(2)

1.游戏框架搭建介绍pygame开发图像界面游戏的几个要素,并且把贪吃蛇游戏的整体框架搭建完成本节知识点包括:pygame的初始化和退出游戏主窗口游戏循环和游戏时钟主窗口背景颜色绘制文本pygame的坐标系游戏事件监听绘制图形定时器事件1.1pygame的初始化和退…

RocketMQ5.0.0消息存储<三>_消息转发与恢复机制

目录 一、消息转发 1. ReputMessageService线程初始化 2. 消息转发更新ConsumeQueue 3. 消息转发更新IndexFile 二、恢复机制 1. Broker加载存储文件 2. Broker正常退出的文件恢复 3. Broker异常退出的文件恢复 三、参考资料 一、消息转发 消息消费队列文件、索引文件…

七大设计原则之单一职责原则应用

目录1 单一职责原则介绍2 单一职责原则应用1 单一职责原则介绍 单一职责(Simple Responsibility Pinciple,SRP)是指不要存在多于一个导致类变更的原因。假设我们有一个 Class 负责两个职责,一旦发生需求变更,修改其中…

线程池的简单实现:Java线程池初学者必读指南

"作为一名Java开发者,是否曾经遇到过多线程并发的问题?线程数量过多时,会导致资源浪费,应用性能下降,甚至发生线程死锁的情况。那么,有没有一种方法可以有效地管理线程,避免这些问题呢&…

Matlab傅里叶谱方法求解一维波动方程

傅里叶谱方法求解基本偏微分方程—一维波动方程 一维波动方程 对于一根两端固定、没有受到任何外力的弦, 若只研究其中的一段, 在不太长的时间 里, 固定端来不及对这段弦产生影响, 则可以认为固定端是不存在的, 弦的长度为无限大。 这种无界 (−∞<x<∞)(-\infty<x&…

震源机制(Focal Mechanisms)之沙滩球(Bench Ball)

沙滩球包含如下信息&#xff1a; a - 判断断层类型&#xff0c;可根据球的颜色快速判断 b - 判断断层的走向(strike)&#xff0c;倾角(dip) c - 确定滑移角/滑动角(rake) 走向 &#xff0c;倾角&#xff0c;滑移角 如不了解断层的定义&#xff0c;可以先阅读&#xff1a;震…

windows下qt设置网卡ip信息+简单案列(图形化界面设置网卡IP)。

windows设置网卡ip信息的方法 文章目录windows设置网卡ip信息的方法前言一、QProcess修改网卡ip信息1.1 代码实例二、system修改网卡ip信息2.1 代码实例三、qt修改网卡信息案例3.1 设计方法3.2 代码实例3.3 功能测试前言 方法1&#xff1a;QProcess修改网卡ip信息&#xff1b;…

四种方式的MySQL安装

mysql安装常见的方法有四种序号 安装方式 说明1 yum\rpm简单、快速&#xff0c;不能定制参数2二进制 解压&#xff0c;简单配置就可使用 免安装 mysql-a.b.c-linux2.x-x86_64.tar.gz3源码编译 可以定制参数&#xff0c;安装时间长 mysql-a.b.c.tar.gz4源码制成rpm包 把源码制…

Spring boot 实战指南(四):登录认证(OAuth、Cookie、Session、Token)、Spring Security

文章目录一、登录认证方式1.OAuth 认证颁发令牌的四种方式2.Cookie/Session 认证(1)Cookie(2)Session3.Token认证基于JWT的Token认证(spring security)二、Spring boot整合Spring Security(前后端分离)1.快速入门2.认证3.授权参考&#xff1a; 教程 登录认证简介 OAuth 2.0 的一…

Spring项目中用了这种解耦模式,老大对我刮目相看

前言不知道大家在项目中有没有遇到过这样的场景&#xff0c;根据传入的类型&#xff0c;调用接口不同的实现类或者说服务&#xff0c;比如根据文件的类型使用 CSV解析器或者JSON解析器&#xff0c;在调用的客户端一般都是用if else去做判断&#xff0c;比如类型等于JSON&#x…

Python Web开发:用Tornado框架制作一个简易的网站

前言 大家早好、午好、晚好吖 ❤ ~ 今天我们要用Python做Web开发&#xff0c;做一个简单的【表白墙】网站。 众所周知表白墙的功能普遍更多的是发布找人&#xff0c;失物招领&#xff0c;还是一个大家可以跟自己喜欢的人公开表白的平台 Tornado框架简单介绍 在Python当中&am…