【C++:STL之栈和队列 | 模拟实现 | 优先级队列 】

news2025/1/10 3:15:25

目录

1. stack的介绍和使用

1.1 stack的介绍

 1.2 stack的使用

2 栈的模拟实现

3 queue的介绍和使用

3.1 queue的介绍

 3.2 queue的使用

4 queue的模拟实现

5 deque的介绍

5.1deque的原理介绍

5.2 deque的缺陷

5.3 为什么选择deque作为stack和queue的底层默认容器

6 priority_queue的介绍和使用

6.1 priority_queue的介绍

6.2 priority_queue的使用

7 priority_queue的模拟实现


1. stack的介绍和使用

1.1 stack的介绍

栈的文档介绍

  • 1. stack是一种容器适配器,专门用在具有后进先出操作的上下文环境中,其删除只能从容器的一端进行元素的插入与提取操作。
  • 2. stack是作为容器适配器被实现的,容器适配器即是对特定类封装作为其底层的容器,并提供一组特定的成员函数来访问其元素,将特定类作为其底层的,元素特定容器的尾部(即栈顶)被压入和弹出。
  • 3. stack的底层容器可以是任何标准的容器类模板或者一些其他特定的容器类,这些容器类应该支持以下操作:
  • empty:判空操作
  • back:获取尾部元素操作
  • push_back:尾部插入元素操作
  • pop_back:尾部删除元素操作
  • 4. 标准容器vectordequelist均符合这些需求,默认情况下,如果没有为stack指定特定的底层容器,默认情况下使用deque

 

 1.2 stack的使用

这些使用我们C语言时学习栈和队列就已经很熟悉了:

函数说明
接口说明
stack()
构造空的栈
empty()
检测stack是否为空
size()
返回stack中元素的个数
top()
返回栈顶元素的引用
push()
将元素val压入stack
pop()
stack中尾部的元素弹出

2 栈的模拟实现

这儿与之前list的反向迭代器一样,用的时一种适配器模式,并不需要自己再造一遍轮子,我们打开stack官网看看官方对栈的介绍:

 大家或许就有了疑问,这个deque<T>是个什么鬼呀?这个我们在下面会详细介绍,至于这里为啥会用deque<T>来作为缺省参数我们在下面讲解duque会给出详细解释。

接下来就给出stack的模拟实现:

namespace grm
{
	template<class T,class Container=deque<T>>
	class stack
	{
	private:
		Container _con;
	public:
		bool empty()
		{
			return _con.empty();
		}
		const T& top()
		{
			return _con.back();
		}
		void push(const T& x)
		{
			_con.push_back(x);
		}
		void pop()
		{
			_con.pop_back();
		}
		size_t size()
		{
			return _con.size();
		}

	};
}

用了适配器的原理写栈会轻松很多。


3 queue的介绍和使用

3.1 queue的介绍

队列的文档介绍

  • 1. 队列是一种容器适配器,专门用于在FIFO上下文(先进先出)中操作,其中从容器一端插入元素,另一端提取元素。
  • 2. 队列作为容器适配器实现,容器适配器即将特定容器类封装作为其底层容器类,queue提供一组特定的成员函数来访问其元素。元素从队尾入队列,从队头出队列。
  • 3. 底层容器可以是标准容器类模板之一,也可以是其他专门设计的容器类。该底层容器应至少支持以下操作:
  • empty:检测队列是否为空
  • size:返回队列中有效元素的个数
  • front:返回队头元素的引用
  • back:返回队尾元素的引用
  • push_back:在队列尾部入队列
  • pop_front:在队列头部出队列
  • 4. 标准容器类dequelist满足了这些要求。默认情况下,如果没有为queue实例化指定容器类,则使用标准容器deque

 

 3.2 queue的使用

函数声明
接口说明
queue()
构造空的队列
empty()
检测队列是否为空,是返回true,否则返回false
size()
返回队列中有效元素的个数
front()
返回队头元素的引用
back()
返回队尾元素的引用
push()
在队尾将元素val入队列
pop()
将队头元素出队列

4 queue的模拟实现

namespace grm
{
	template<class T, class Container = deque<T>>
	class queue
	{
	private:
		Container _con;
	public:
		bool empty()
		{
			return _con.empty();
		}
		const T& front()
		{
			return _con.front();
		}
		const T& back()
		{
			return _con.back();
		}
		void push(const T& x)
		{
			_con.push_back(x);
		}
		void pop()
		{
			_con.pop_front();
		}
	};
}

5 deque的介绍

5.1deque的原理介绍

deque( 双端队列 ) :是一种双开口的 " 连续 " 空间的数据结构 ,双开口的含义是:可以在头尾两端进行插入和删除操作,且时间复杂度为 O(1) ,与 vector 比较,头插效率高,不需要搬移元素;与 list 比较,cpu高速缓存命中高,不会频繁申请释放空间

 起初deque设计出来是想要融合vector和list的优点想要代替他们,但是结果却差强人意。尽管dequevector比较,头插效率高,与list比较,cpu高速缓存命中高。但是却比不了vector的O(1)的任意位置随机访问,list的任意位置O(1)插入删除。

所以deque是代替不了vector和list的,我们只需要大概了解一下原理,并不需要去模拟实现一下:

deque 并不是真正连续的空间,而是由一段段连续的小空间拼接而成的,实际 deque 类似于一个动态的二维数组 ,其底层结构如下图所示:

 

 上面的中控器用的是一个指针数组维护的,用数组中的指针指向每一个buffer,buffer的具体大小是由编译器所决定的。

5.2 deque的缺陷

vector 比较 deque 的优势是:头部插入和删除时, 不需要搬移元素,效率特别高 ,而且在 扩容时,也不需要搬移大量的元素 ,因此在这方面的效率是比 vector 高的。
list 比较 ,其底层是连续空间, 空间利用率比较高 ,不需要存储额外字段。
但是, deque 有一个致命缺陷:不适合遍历,因为在遍历时, deque 的迭代器要频繁的去检测其是否移动到某段小空间的边界,导致效率低下 ,而序列式场景中,可能需要经常遍历,因此 在实际中,需要线性结构 时,大多数情况下优先考虑 vector list deque 的应用并不多,而 目前能看到的一个应用就是, STL 用其作 stack queue 的底层数据结构。

 5.3 为什么选择deque作为stackqueue的底层默认容器

stack 是一种后进先出的特殊线性数据结构,因此只要具有 push_back() pop_back() 操作的线性结构,都可以作为 stack 的底层容器,比如 vector list 都可以; queue 是先进先出的特殊线性数据结构,只要具有 push_back pop_front 操作的线性结构,都可以作为 queue 的底层容器,比如 list 。但是 STL 中对 stack queue 默认选择 deque 作为其底层容器,主要是因为:
1. stack queue 不需要遍历 ( 因此 stack queue 没有迭代器 ) ,只需要在固定的一端或者两端进行操作。
2. stack 中元素增长时, deque vector 的效率高 ( 扩容时不需要搬移大量数据 ) queue 中的元素增长时, deque 不仅效率高,而且内存使用率高。
结合了 deque 的优点,而完美的避开了其缺陷。

6 priority_queue的介绍和使用

6.1 priority_queue的介绍

priority_queue的介绍

  • 1. 优先队列是一种容器适配器,根据严格的弱排序标准,它的第一个元素总是它所包含的元素中最大的(默认情况)。
  • 2. 此上下文类似于堆,在堆中可以随时插入元素,并且只能检索最大堆元素(优先队列中位于顶部的元素)
  • 3. 优先队列被实现为容器适配器,容器适配器即将特定容器类封装作为其底层容器类,queue提供一组特定的成员函数来访问其元素。元素从特定容器的尾部弹出,其称为优先队列的顶部。
  • 4. 底层容器可以是任何标准容器类模板,也可以是其他特定设计的容器类。容器应该可以通过随机访问迭代器访问,并支持以下操作:
  • empty():检测容器是否为空
  • size():返回容器中有效元素个数
  • front():返回容器中第一个元素的引用
  • push_back():在容器尾部插入元素
  • 5. 标准容器类vectordeque满足这些需求。默认情况下,如果没有为特定的priority_queue类实例化指定容器类,则使用vector
  • 6. 需要支持随机访问迭代器,以便始终在内部保持堆结构。容器适配器通过在需要时自动调用算法函数make_heappush_heappop_heap来自动完成此操作。

6.2 priority_queue的使用

优先级队列默认使用 vector 作为其底层存储数据的容器,在 vector 上又使用了堆算法将 vector 中元素构造成堆的结构,因此 priority_queue 就是堆,所有需要用到堆的位置,都可以考虑使用 priority_queue 。注意: 默认情况下 priority_queue 是大堆
忘记了堆的老铁可以去看看博主讲解的这篇文章: http://​http://t.csdn.cn/Buh2Q​http://xn--http-u76a//t.csdn.cn/Buh2Q%E2%80%8B
函数声明
接口说明
priority_queue()   priority_queue(first, last)
构造一个空的优先级队列
empty( )
检测优先级队列是否为空,是返回 true ,否则返回false
top( )
返回优先级队列中最大(最小元素),即堆顶元素
push(x)
在优先级队列中插入元素x
pop( )
删除优先级队列中最大(最小)元素,即堆顶元素

 我们可以来试试:

	priority_queue<int> pq;//仿函数为less,默认建立大堆
	pq.push(10);
	pq.push(1);
	pq.push(8);
	pq.push(3);
	pq.push(15);
	pq.push(16);
	while (!pq.empty())
	{
		cout << pq.top() << " ";
		pq.pop();
	}

 至于为啥仿函数为less,但是建立的确是大堆这个是大佬们硬性规定的,大家也不要太过于较真。

要实现建立小堆我们调用一下greater仿函数即可。

	priority_queue<int,vector<int>,greater<int>> pq;//显示调用仿函数为greater,建立小堆
	pq.push(10);
	pq.push(1);
	pq.push(8);
	pq.push(3);
	pq.push(15);
	pq.push(16);
	while (!pq.empty())
	{
		cout << pq.top() << " ";
		pq.pop();
	}

运行结果:

 假如我们想比较自定义类型的大小应该咋办?直接用STL自带的仿函数好像并不能够完成,所以我们还得自己再实现一下仿函数。

先把日期类给整出来:

class Date
{
	friend ostream& operator<<(ostream& out, const Date& d);//友元声明
private:
	int _year;
	int _month;
	int _day;

public:
	Date(int year = 1, int month = 1, int day = 1)
		:_year(year)
		, _month(month)
		, _day(day)
	{}
	bool operator<(const Date& d)const
	{
		return (_year < d._year) ||
			(_year == d._year && _month < d._month) ||
			(_year == d._year && _month == d._month && _day < d._day);
	}

	bool operator>(const Date& d)const
	{
		return (_year > d._year) ||
			(_year == d._year && _month > d._month) ||
			(_year == d._year && _month == d._month && _day > d._day);
	}
};

ostream& operator<<(ostream& out, const Date& d)
{
	out << d._year << "/" << d._month << "/" << d._day << endl;
	return out;
}

大家这时心里可能会想:重载>>还好理解,因为要输出结果嘛,为啥你要重载>和<运算符呀?

不知道大家忘记了没,当我们建堆时有两种调整方式,向上调整和向下调整时都会设计数据的比较,内置类型没事,自定义类型就得我们重载比较运算符了,所以我们要想实现自定义类型的比较,这个是必不可少的。

然后我们就可以实现日期类的比较了:

	priority_queue<Date, vector<Date>> pq;
	pq.push(Date(2023, 2, 7));
	pq.push(Date(2021, 2, 9));
	pq.push(Date(2023, 2, 8));
	pq.push(Date(2024, 2, 6));
	
	while(!pq.empty())
	{
		cout << pq.top() ;
		pq.pop();
	}

 运行结果:

 但是假如我们push的是日期类的地址,用系统自带的仿函数能够完成吗?

大家想想,由于push的是地址,所以比较的是地址的大小而不是地址指向的内容的大小,所以这种方法肯定是不合理的。

我们可以来试试:

很明显结果是不对的,尽管有时候碰巧结果恰好对的,也只是运气而已。

即我们还得自己写仿函数:

仿函数:

	struct p_date_less
	{
		bool operator()(Date*& pd1, Date*& pd2)
		{
			return *pd1 < *pd2;
		}
		
	};
	struct p_date_greater
	{
		bool operator()(Date*& pd1, Date*& pd2)
		{
			return *pd1 > *pd2;
		}

	};

这样就能够正确比较了:


7 priority_queue的模拟实现

	template<class T, class Container = vector<T>, class Compare = less<T>>
	class priority_queue
	{
	private:
		Container _con;
		void adjust_up(size_t child)//假设这里要建立大堆,默认仿函数是less
		{
			size_t parent = child - 1 >> 1;
			while (child > 0)
			{
				//if (_con[child] > _con[parent])
				Compare cmp;//实例化出一个Cmpare的对象
				if (cmp(_con[parent],_con[child]))//由于仿函数中实现的是x<y
				{
					swap(_con[child], _con[parent]);
					child = parent;
					parent = child - 1 >> 1;
				}
				else
					break;
			}
		}
		void adjust_down(size_t parent)
		{
			size_t child = parent * 2 + 1;
			while (child < _con.size())
			{
				Compare cmp;//实例化出一个Cmpare的对象
				if (child + 1 < _con.size() && cmp(_con[child],_con[child+1]))//假如建立大堆,默认仿函数为less,就得满足_con[child]<_con[child+1]
					child += 1;
				
				//if (_con[child] > _con[parent])
				if (cmp(_con[parent],_con[child]))//由于仿函数中实现的是x<y
				{
					swap(_con[child], _con[parent]);
					parent = child;
					child = parent * 2 + 1;
				}
				else
					break;
			}
		}
		
	public:
		priority_queue()
		{

		}
		template<class InputIterator>
		priority_queue(InputIterator first, InputIterator last)
			:_con()
		{
			for (int i = _con.size() - 2 >> 1; i >= 0; i--)//向下建堆时间复杂度为O(N)
				adjust_down(i);
		}
			
		void push(const T& x)
		{
			_con.push_back(x);
			adjust_up(_con.size() - 1);
		}
		void pop()
		{
			swap(_con[0], _con[size() - 1]);
			_con.pop_back();
			adjust_down(0);
		}
		const T& top()
		{
			return _con.front();
		}
		bool empty()
		{
			return _con.empty();
		}
		size_t size()
		{
			return _con.size();
		}

	};

这个之前在堆那一部分做了较为详细的讲解,这里就不在多说了。


本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.coloradmin.cn/o/339373.html

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈,一经查实,立即删除!

相关文章

nodejs+vue+elementui在线求助系统vscode

目 录 摘 要 1 前 言 3 第1章 概述 4 1.1 研究背景 4 1.2 研究目的 4 1.3 研究内容 4 第二章 开发技术介绍 5 前端技术&#xff1a;nodejsvueelementui,视图层其实质就是vue页面&#xff0c;通过编写vue页面从而展示在浏览器中&#xff0c;编写完成的vue页面要能够和控制器类进…

加载sklearn covtype数据集出错 fetch_covtype() HTTPError: HTTP Error 403: Forbidden解决方案

大家好,我是爱编程的喵喵。双985硕士毕业,现担任全栈工程师一职,热衷于将数据思维应用到工作与生活中。从事机器学习以及相关的前后端开发工作。曾在阿里云、科大讯飞、CCF等比赛获得多次Top名次。喜欢通过博客创作的方式对所学的知识进行总结与归纳,不仅形成深入且独到的理…

微搭低代码从入门到精通07-基础布局组件

低码开发不同于传统开发&#xff0c;传统开发我们通常需要编写前端代码和后端代码。前端代码由HTML、CSS和JavaScript组成&#xff0c;后端代码我们通常要用后端语言比如Java来编写接口。 低码开发的特点是可视化开发&#xff0c;在编辑器中通过组件的拖拽来完成页面的编制。如…

莽村李青都看得懂的Vue响应式原理

Vue响应式原理八股文序违背老祖宗的决定将Vue响应式原理公众于世响应式数据&#xff08;Observe篇&#xff09;dom更新&#xff08;Wacther篇&#xff09;依赖收集八股文序 开篇来一段大家都会背诵的八股文。 某面试官&#xff1a; 请你简要介绍一下Vue的响应式原理。 答&am…

leaflet 读取上传的wkt文件,转换为geojson文件(示例代码056)

第056个 点击查看专栏目录 本示例的目的是介绍演示如何在vue+leaflet中上传WKT文件,解析wtk文件并转换为geojson,并在地图上显示图片。 直接复制下面的 vue+openlayers源代码,操作2分钟即可运行实现效果. 文章目录 示例效果配置方式本示例所用的a.wkt示例源代码(共139行)…

AirServer在哪下载?如何免费使用教程

苹果手机投屏到电脑mac是怎么弄&#xff1f;你知道多少&#xff1f;相信大家对苹果手机投屏到电脑mac能在电脑上操作不是很了解&#xff0c;下面就让coco玛奇朵带大家一起了解一下教程。AIrServer是一款ios投屏到mac的专用软件&#xff0c;可将iOS上的音频&#xff0c;视频&…

make的使用及Makefile万能模板

make的使用及Makefile万能模板前言为什么用makemake的使用Makefile万能模板前言 gcc 的编译&#xff0c;是将源码生成可执行程序。 例如&#xff1a; gcc hello.c -o hello源码到可执行程序需要四步处理 硬件——》机器语言——》汇编语言——》 高级语言 1&#xff09;预处理…

【openGauss实战8】Schema的图文解读

&#x1f4e2;&#x1f4e2;&#x1f4e2;&#x1f4e3;&#x1f4e3;&#x1f4e3; 哈喽&#xff01;大家好&#xff0c;我是【IT邦德】&#xff0c;江湖人称jeames007&#xff0c;10余年DBA及大数据工作经验 一位上进心十足的【大数据领域博主】&#xff01;&#x1f61c;&am…

Session与Cookie的区别(三)

中场休息 让我们先从比喻回到网络世界里&#xff0c;HTTP 是无状态的&#xff0c;所以每一个 Request 都是不相关的&#xff0c;就像是对小明来说每一位客人都是新的客人一样&#xff0c;他根本不知道谁是谁。 既然你没办法把他们关联&#xff0c;就代表状态这件事情也不存在。…

微搭低代码从入门到精通08-轮播容器

我们上一篇讲解了基础布局组件&#xff0c;讲解了普通容器和文本组件的用法&#xff0c;本篇我们继续介绍布局组件。 小程序中经常会有个功能是轮播图展示的功能&#xff0c;多张图片可以顺序进行切换。我们学习使用轮播容器的时候&#xff0c;先考虑切换的图片从哪来&#xf…

视频连载09 - 这个为生信学习和生信作图打造的开源R教程真香!!!

点击阅读原文跳转完整教案。1 思考题2 R基础2.1 R安装2.2 Rstudio基础2.2.1 Rstudio版本2.2.2 Rstudio安装2.2.3 Rstudio 使用2.3 R基本语法2.3.1 获取帮助文档&#xff0c;查看命令或函数的使用方法、事例或适用范围2.3.2 R中的变量及其初始化2.3.3 变量类型和转换2.3.4 R中矩…

Python-项目实战--贪吃蛇小游戏(1)

1.贪吃蛇游戏规则贪吃蛇游戏规则如下:1.1开始和结束贪吃蛇初始出现在游戏窗口的左上角位置,体长共有3节游戏过程中&#xff0c;一旦蛇头撞到了窗口的边缘或者身体的其他部位,游戏结束游戏过程中&#xff0c;点击游戏窗口的关闭按钮&#xff0c;或者按下ESC键可以直接退出游戏一…

Java高级-常用类-String、Date、Compare、Other

本篇讲解java常用类 String类 String:字符串&#xff0c;使用一对""引起来表示。 String类被声明为final的&#xff0c;不可被继承。 String实现了Serializable接口&#xff1a;表示字符串是支持序列化的。 ​ 实现了Comparable接口&#xff1a;表示String可以比较…

微搭低代码从入门到精通09-数据容器

我们已经用了两篇的篇幅介绍了微搭的布局组件&#xff0c;包括普通容器、文本、图片、轮播容器。 微搭中还有粗粒度的组件&#xff0c;今天介绍的数据容器就是粗粒度的组件。所谓粗粒度的组件&#xff0c;一般包括基础组件、样式还有默认的事件。数据容器一共包含三种分别是数…

vscode sftp从linux服务器下载文件至本地:No such file or dictionary【已解决】

在服务器跑完程序需要下载数据的时候报错&#xff1a; [warn] ENOENT: no such file or directory, open /home/LIST_2080Ti/.ssh/config load /home/LIST_2080Ti/.ssh/config failed 完整报错内容如下&#xff1a; [02-10 08:38:47] [info] config at /home/LIST_2080Ti {&q…

Arm-Linux子系统的互相Notify

前言&#xff1a; Linux下面不同的子系统一个个的组成了整个系统的运行环节&#xff0c;为了让这些子系统能够互相通讯&#xff0c;有一种叫做&#xff1a;notify chain(通知链)的东西。本篇看下。 概括 所谓通知链&#xff0c;有通知&#xff0c;就有执行的地方。比如A子系统通…

无题

&#xff08;1&#xff09;风国产化替代&#xff1f;全球化&#xff1f;新一代数字化技术升级&#xff1f;云化&#xff08;公有云化&#xff09;&#xff1f;业务线上化&#xff1f;产业互联整合&#xff1f;私有云原生技术可以支撑&#xff1a;国产化替代-新一代数字化技术升…

WPS底层逻辑串讲

文章目录wps页面基本介绍演示文稿功能讲解框架介绍具体功能讲解&#xff1a;1. 另存为2. 输出图片3. 文件打包4. 演示文稿打印5. 文档加密两种方式 ❤文件打开密码 &#xff1a;文档加密--->密码加密--》输入密码即可 ❤文档编辑密码&#xff1a;输出为PDF--->设置即可6.…

【老卫拆书】009期:Vue+Node肩挑全栈!《Node.js+Express+MongoDB+Vue.js全栈开发实战》开箱

今天刚拿到一本新书&#xff0c;叫做《Node.jsExpressMongoDBVue.js全栈开发实战》&#xff0c;做个开箱。 外观 先从外观上讲&#xff0c;这本是全新的未开封的&#xff0c;膜还在。 这本书介绍从技术原理到整合开发实战&#xff0c;以丰富的项目展现全栈开发的一个技巧。 …

ChatGPT如何注册,如何使用(个人版)文末送账号

您好&#xff0c;我是码农飞哥&#xff08;wei158556&#xff09;&#xff0c;感谢您阅读本文&#xff0c;欢迎一键三连哦。 &#x1f4aa;&#x1f3fb; 1. Python基础专栏&#xff0c;基础知识一网打尽&#xff0c;9.9元买不了吃亏&#xff0c;买不了上当。 Python从入门到精…