基于PLUS+InVEST模型 生态系统服务多情景模拟预测

news2025/1/9 16:42:50

目录

第一章 理论基础与软件介绍

第二章 数据获取与制备

第三章 土地利用格局模拟

第四章 生态系统服务评估

第五章 时空变化及驱动机制分析

第六章 论文撰写技巧及案例分析


工业革命以来,社会生产力迅速提高,人类活动频繁,此外人口与日俱增对土地的需求与改造更加强烈,人-地关系日益紧张。此外,土地资源的不合理开发利用更是造成了水土流失、植被退化、水资源短缺、区域气候变化、生物多样性锐减等一系列生态环境问题。如何优化土地利用模式,维持区域土地生态安全,缓和土地供需矛盾,使人-地关系协调共生作为关键问题,成为国内外研究热点。

生态系统服务是人类直接或间接从生态系统中获得的惠益,在应对城市挑战和实施可持续发展方面发挥着至关重要的作用。随着全球城市化的快速发展, 频繁的人类活动导致了土地利用的快速变化,导致生态系统结构和功能的变化,影响生态系统服务的供应。因此,生态系统服务评估与未来城市土地规划的整合已成为近年来的一个重要研究课题。

情景分析方法目前是针对未来生态系统服务权衡和协同性研究最成熟的方法之一。通过建立不同的土地利用情景分析生态系统服务之间的变化和内部相互响应的作用,可为未来土地利用规划情景提出决策性建议。PLUS模型有两大模块,一是基于土地扩张分析策略的规则挖掘框架,二是基于多类型随机补丁种子的CA模型,此外该模型还内嵌了Markov chain,以便于对土地利用数量需要作出预测。PLUS模型能够以一个斑块级土地利用模拟模型,精准模拟土地利用背后的非线性关系变化,实现更加准确地未来不同政策情景下 土地利用对潜在生态系统服务功能的影响。

在未来土地情景演替加剧的情况下,需要开展准确模拟未来 土地利用发展潜力、符合政策指引的多种情景规划、合理准确的模拟生态系统服务的各项功能及其权衡的研究,是满足可持续生态系统服务权衡发展理念的迫切需求。地理空间分析技术的应用将确保这一目标的实现,利用PLUS模型有助于决策者在所需情景条件下通过设定开发驱动参数提前评估和规划土地利用政策。InVEST模型已广泛用于评估生态系统服务。

本教程从数据、方法、实践三方面对生态系统服务多情景预测进行讲解。内容涵盖多源数据的获取、选择与统一;ArcGIS空间数据处理、空间分析与制图;PLUS模型和InVEST模型的原理,参量提取与模型运行及结果分析;土地利用时空变化以及对生态系统服务的影响分析;

您将可以学会:1)基于历史土地利用数据,进行多情景模式下的未来土地利用预测;2)利用InVEST模型对生态系统服务功能进行量化与评价;3)空间数据时空变化预测与分析;4)生态系统服务空间异质性归因分析。在具体实践案例中,您将学会运用上述原理和技术方法,提升空间信息技术的应用能力水平。

第一章 理论基础与软件介绍

1、概念界定与理论基础

土地利用
多情景模拟
生态系统服务

2、地理数据简介

地理数据库:
文件地理数据库:
保存在文件系统文件夹中的多种类型的 GIS 数据集的集合;
个人地理数据库:在 Microsoft Access 数据文件中存储和管理的 ArcGIS 地理数据库的原始数据格式
栅格数据:由按行和列(或格网)组织的像元(或像素)矩阵组成,其中的每个像元都包含一个信息值。栅格可以是数字航空像片、卫星影像、数字图片或甚至扫描的地图。
矢量数据:存储地理要素的几何位置和属性信息的非拓扑简单格式,地理要素通过点、线或面(区域)来表示。

表格数据:

3、ArcGIS空间数据处理与分析介绍与实践

ArcGIS平台简介
ArcGIS常用坐标系
ArcGIS空间数据处理及转换
ArcGIS空间分析
ArcGIS制图技巧

4、PLUS模型和InVEST模型介绍及安装

PLUS版本介绍,安装;
PLUS软件界面,常用功能介绍;
InVEST版本介绍,安装;
InVEST软件界面,常用功能介绍;
过去踩过的那些坑—常见错误和使用注意;路径问题等

第二章 数据获取与制备

1、土地利用数据

土地利用数据集介绍及获取方法
土地利用数据集选取
土地利用数据预处理:影像拼接、裁剪、重投影等

2、驱动因子数据

气候环境数据
社会经济数据

3、不同类型数据制备方法与实践

栅格数据处理:

栅格影像拼接、裁剪、重投影及重采样等处理;

基础地理信息数据处理及空间分析:

欧氏距离算法介绍与分析
密度分析算法介绍与分析

地形因子提取

坡度、坡向、地形起伏度、山体阴影等地形因子提取的原理与方法

土壤因子数据提取

属性表的编辑与导出
连接表的属性
重分类:多种可对输入像元值进行重分类或将输入像元值更改为替代值的方法
查找表:通过在输入栅格数据表中查找另一个字段的值来新建栅格

气象因子数据处理:

站点数据下载及提取
插值分析:反距离权重法(inverse distance weighting,IDW)、自然邻域法、趋势面法和样条函数法等方法对气象站点数据插值分析;
NetCDF 数据处理:根据 NetCDF 文件创建栅格图层

栅格数据的转换方法

第三章 土地利用格局模拟

1、PLUS模型原理

基于土地扩张分析策略的规则挖掘框架
基于多类型随机斑块种子的CA模型

2、PLUS模型构建及精度验证

土地利用扩张分析

模拟参数设置

(1)限制区域
(2)领域效应
(3)转化成本
(4)领域权重
(5)土地利用需求
利用Markov模型来预测完成。

式中:St、St+1为t、t+1时期土地利用,Pij为转移概率矩阵,n为土地利用类型。

模型精度验证

总体精度(overall accuracy)
Kappa系数

3、不同情景下横断山区土地利用格局模拟

自然发展情景下土地利用模拟
生态保护情景下土地利用模拟
经济发展优先情景下土地利用模拟

第四章 生态系统服务评估

1、InVEST模型原理与模块

2、产水服务

数据需求与制备:


3、土壤保持


数据需求与制备:


4、碳储量


数据需求与制备:


5、生境质量


数据需求与制备:

第五章 时空变化及驱动机制分析

1、土地利用时空变化分析

土地利用结构变化分析
土地利用动态度分析
土地利用转移矩阵分析
土地利用标准差椭圆分析

2、空间自相关 (Global Moran's I) (Spatial Statistics) 分析原理与实践

3、高/低聚类(Getis-Ord General G)分析 的工作原理与实践

使用 Getis-Ord General G 统计可度量高值或低值的聚类程度。

4、归因分析

地理探测器原理
地理探测器模块安装与介绍
因子检测

交互探测

第六章 论文撰写技巧及案例分析

1、科技论文结构
介绍摘要、绪论、方法、结果、讨论、结论的写作要点
2、科技论文图表规范
3、论文投稿技巧分析
4.、SCI论文案例分析
5、模型应用可拓展方向

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.coloradmin.cn/o/337747.html

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈,一经查实,立即删除!

相关文章

Rabbitmq业务难点

Rabbitmq业务难点1.消息生产者发送的消息无法路由到任何一个队列怎么处理?2.聊聊Rabbitmq的七种工作模式3.Rabbitmq的消息确认机制4.Rabbitmq的消息持久化5.发布确认模式如何确保生产者能够成功将消息投递到消息队列6. Rabbitmq基于队列设置消息过期时间和单独针对消息设置过期…

ByteHouse:基于ClickHouse的实时数仓能力升级解读

更多技术交流、求职机会,欢迎关注字节跳动数据平台微信公众号,回复【1】进入官方交流群 ByteHouse是火山引擎上的一款云原生数据仓库,为用户带来极速分析体验,能够支撑实时数据分析和海量数据离线分析。便捷的弹性扩缩容能力&…

数据结构 第八章 查找(静态查找表)

集合 1、集合中的数据元素除了属于同一集合外,没有任何的逻辑关系 2、在集合中,每个数据元素都有一个区别于其他元素的唯一标识(键值或者关键字值) 3、集合的运算: 1 查找某一元素是否存在(内部查找、外部查找) 2 将集合中的元素按照它的唯一标识进行排序4、集合的…

shell编程之awk

文章目录九、shell编程之awk9.1 什么是awk9.2 awk的工作流程9.3 awk程序执行方式9.4 awk基本语法9.4.1 awk的输出9.4.2 awk的变量9.4.3 awk操作符9.4.4 awk的模式9.4.5 awk控制语句9.4.6 awk使用数组9.4.7 awk内置函数9.5 awk 案例9.5.2 网站日志分析九、shell编程之awk 9.1 什…

Linux:软链接和硬链接的理解

Linux通过命令行创建快捷方式使用的命令是ln,这里就涉及到了软链接和硬链接,确实有些不好理解,如果你也一样,那么可以继续看下去了 目录ln命令语法实操创建软链接:ln -s [源文件或目录][目标文件或目录]创建硬链接&…

使用Consul建立docker集群

概述什么是consulConsul是HashiCorp公司推出的开源工具,Consul由Go语言开发,部署起来非常容易,只需要极少的可执行程序和配置文件,具有绿色、轻量级的特点。Consul是分布式的、高可用的、可横向扩展的用于实现分布式系统的服务发现…

深度学习|论文中常用的注意力模块合集(下)

注意力机制可以增加少量参数的情况下来提升计算精度和模型性能,在论文中常用的注意力模块合集(上)中介绍了三种注意力机制,它们分别是CA、CBAM和SE,均在目标检测和语义分割领域内能够提升模型的性能,废话不多说,直接开…

java分治算法

分治算法介绍 分治法是一种很重要的算法。字面上的解释是“分而治之”,就是把一个复杂的问题分成两个或更多的相同或 相似的子问题,再把子问题分成更小的子问题……直到最后子问题可以简单的直接求解,原问题的解即子问题 的解的合并。这个技…

【机器学习】Linear and Nonlinear Regression 线性/非线性回归讲解

文章目录一、回归问题概述二、误差项定义三、独立同分布的假设四、似然函数的作用五、参数求解六、梯度下降算法七、参数更新方法八、优化参数设置一、回归问题概述 回归:根据工资和年龄,预测额度为多少 其中,工资和年龄被称为特征&#xff0…

flea-msg使用之JMS初识

JMS初识 1. JMS 基本概念 1.1 什么是 JMS ? Java 消息服务【Java Message Service】,又简称 JMS,它是 Java 平台上有关面向消息中间件(MOM)的技术规范。 1.2 JMS 规范 JMS 中定义了 Java 中访问消息中间件的接口,并没有给予实…

分类预测 | MATLAB实现SSA-CNN麻雀算法优化卷积神经网络多特征分类预测

分类预测 | MATLAB实现SSA-CNN麻雀算法优化卷积神经网络多特征分类预测 目录分类预测 | MATLAB实现SSA-CNN麻雀算法优化卷积神经网络多特征分类预测分类效果基本介绍模型描述程序设计参考文献分类效果 基本介绍 1.Matlab实现SSA-CNN麻雀算法优化卷积神经网络多特征分类预测&…

Python操作的5个坏习惯,你中了几个呢?

很多文章都有介绍怎么写好 Python,我今天呢相反,说说写代码时的几个坏习惯。有的习惯会让 Bug 变得隐蔽难以追踪,当然,也有的并没有错误,只是个人觉得不够完美。 注意:示例代码在 Python 3.6 环境下编写 …

数据与C(布尔类型和虚数和实数)

一._Bool类型(%d占位符) C99标准添加了_Bool类型,用于表示布尔值,既逻辑值true(1)和false(0)。原则上_Bool在原则上仅占用1位存储空间,因为对0和1而言,1位的…

数据与C(位,字节,进制转换和C数据内部存储)

程序的运行离不开数据,所以在本数据章节我们会比较详细的讲解不同数据的重要内容 本章主要讲解一些基础知识便于后面后面的数据类型学习,如果本章知识都懂的同学可以直接从下章开始阅读 目录 一.常量和变量 二.位,字节和字 三.四种进制形…

BI-SQL丨ALL、ANY、SOME

ALL、ANY、SOME ALL、ANY和SOME,这三个关键字,在SQL中使用频率较高,通常可以用来进行数据比较筛选。 注:SQL中ALL的用法和DAX中ALL的用法是完全不同的,小伙伴不要混淆了。 那么三者之间的区别是什么呢? A…

spring 笔记

一、spring概述 1.1 spring介绍 spring是一个轻量级的控制反转和面向切面的容器框架,用来解决企业项目开发的复杂度问题---解耦 轻量级:体积小,对代码没有侵入性控制反转:IOC inverse of control, 把创建对象的工作交…

JUC并发编程Ⅰ -- Java中的线程

文章目录线程与进程并行与并发进程与线程应用应用之异步调用应用之提高效率线程的创建方法一:通过继承Thread类创建方法二:使用Runnable配合Thread方法三:使用FutureTask与Thread结合创建查看进程和线程的方法线程运行的原理栈与栈帧线程上下…

MAC Boook打印长图

有时老师给留的作业是一张长图,直接打印或者通过把图放入word打印都不能实现把长页分成多页进行打印。通过网上找到思路可以通过EXCEL实现将长图分成多页打印。 测试版本 macos:ventura 13.1 office 365 注:同样适用windows版本的excel 第…

cass10.1+鸿业生成平纵横数据

cass10.1鸿业生成平纵横数据前言1 纵断面数据获取1.1 数据准备1.2 纵断面桩号设置(1)桩号设置(2)桩号标注(3)标注显示1.3 高程数据处理1.4 纵断面里程标高文件生成2. cass10.1生成横断面数据2.1 生成横断面…

区块链技术与应用2——BTC-数据结构

文章目录比特币中的数据结构1. 区块链(block chain)2. 默克尔树(Merkle tree)3.哈希指针的问题比特币中的数据结构 1. 区块链(block chain) 哈希指针: (1)保存数值的位置…