文章目录
- 一、回归问题概述
- 二、误差项定义
- 三、独立同分布的假设
- 四、似然函数的作用
- 五、参数求解
- 六、梯度下降算法
- 七、参数更新方法
- 八、优化参数设置
一、回归问题概述
回归:根据工资和年龄,预测额度为多少
其中,工资和年龄被称为特征(自变量),额度被称为标签(因变量)
下图展示了线性回归特性,其相当于Y = aX1+bX2+c,在此问题中,就相当于一个三维空间中的二维平>面,我们希望找到一个二维平面,尽可能接近所有点
二、误差项定义
下图展示了误差项的定义,我们一般认为误差项越接近0越好
三、独立同分布的假设
- 误差 ε ( i ) \varepsilon^{(i)} ε(i) 是独立并且具有相同的分布, 并且服从均值为0方差为 θ 2 \boldsymbol{\theta}^2 θ2 的高斯分布
- 独立:张三和李四一起来贷款,他俩没关系
- 同分布: 他俩都来得是我们假定的这家银行
- 高斯分布(正态分布) : 银行可能会多给,也可能会少给,但是绝大多数情况下 这个浮动不会太大,极小情况下浮动会比较大,符合正常情况
四、似然函数的作用
(1) 预测值与误差 :
y ( i ) = θ T x ( i ) + ε ( i ) y^{(i)}=\theta^T x^{(i)}+\varepsilon^{(i)} y(i)=θTx(i)+ε(i)
(2) 由于误差服从高斯分布 :
p ( ϵ ( i ) ) = 1 2 π σ exp ( − ( ϵ ( i ) ) 2 2 σ 2 ) p\left(\epsilon^{(i)}\right)=\frac{1}{\sqrt{2 \pi} \sigma} \exp \left(-\frac{\left(\epsilon^{(i)}\right)^2}{2 \sigma^2}\right) p(ϵ(i))=2πσ1exp(−2σ2(ϵ(i))2)
将 ( 1 ) (1) (1) 式带入 ( 2 ) (2) (2) 式:
p ( y ( i ) ∣ x ( i ) ; θ ) = 1 2 π σ exp ( − ( y ( i ) − θ T x ( i ) ) 2 2 σ 2 ) p\left(y^{(i)} \mid x^{(i)} ; \theta\right)=\frac{1}{\sqrt{2 \pi} \sigma} \exp \left(-\frac{\left(y^{(i)}-\theta^T x^{(i)}\right)^2}{2 \sigma^2}\right) p(y(i)∣x(i);θ)=2πσ1exp(−2σ2(y(i)−θTx(i))2)
似然函数(独立同分布的前提下,联合概率密度等于边缘概率密度的乘积) :
L ( θ ) = ∏ i = 1 m p ( y ( i ) ∣ x ( i ) ; θ ) = ∏ i = 1 m 1 2 π σ exp ( − ( y ( i ) − θ T x ( i ) ) 2 2 σ 2 ) L(\theta)=\prod_{i=1}^m p\left(y^{(i)} \mid x^{(i)} ; \theta\right)=\prod_{i=1}^m \frac{1}{\sqrt{2 \pi} \sigma} \exp \left(-\frac{\left(y^{(i)}-\theta^T x^{(i)}\right)^2}{2 \sigma^2}\right) L(θ)=i=1∏mp(y(i)∣x(i);θ)=i=1∏m2πσ1exp(−2σ2(y(i)−θTx(i))2)
解释 : 什么样的参数跟我们的数据组合后恰好是真实值
对数似然 :
log L ( θ ) = log ∏ i = 1 m 1 2 π σ exp ( − ( y ( i ) − θ T x ( i ) ) 2 2 σ 2 ) \log L(\theta)=\log \prod_{i=1}^m \frac{1}{\sqrt{2 \pi} \sigma} \exp \left(-\frac{\left(y^{(i)}-\theta^T x^{(i)}\right)^2}{2 \sigma^2}\right) logL(θ)=logi=1∏m2πσ1exp(−2σ2(y(i)−θTx(i))2)
解释 : 乘法难解,加法就容易了,对数里面乘法可以转换成加法
五、参数求解
展开化简 :
∑ i = 1 m log 1 2 π σ exp ( − ( y ( i ) − θ T x ( i ) ) 2 2 σ 2 ) = m log 1 2 π σ − 1 σ 2 ⋅ 1 2 ∑ i = 1 m ( y ( i ) − θ T x ( i ) ) 2 \sum_{i=1}^m \log \frac{1}{\sqrt{2 \pi} \sigma} \exp \left(-\frac{\left(y^{(i)}-\theta^T x^{(i)}\right)^2}{2 \sigma^2}\right) \\ =m \log \frac{1}{\sqrt{2 \pi} \sigma}-\frac{1}{\sigma^2} \cdot \frac{1}{2} \sum_{i=1}^m\left(y^{(i)}-\theta^T x^{(i)}\right)^2 i=1∑mlog2πσ1exp(−2σ2(y(i)−θTx(i))2)=mlog2πσ1−σ21⋅21i=1∑m(y(i)−θTx(i))2
目标:让似然函数(对数变换后也一样 ) 越大越好
J ( θ ) = 1 2 ∑ i = 1 m ( y ( i ) − θ T x ( i ) ) 2 ( 最小二乘法 ) J(\theta)=\frac{1}{2} \sum_{i=1}^m\left(y^{(i)}-\theta^T x^{(i)}\right)^2 \text { ( 最小二乘法 ) } J(θ)=21i=1∑m(y(i)−θTx(i))2 ( 最小二乘法 )
目标函数 :
J ( θ ) = 1 2 ∑ i = 1 m ( h θ ( x ( i ) ) − y ( i ) ) 2 = 1 2 ( X θ − y ) T ( X θ − y ) J(\theta)=\frac{1}{2} \sum_{i=1}^m\left(h_\theta\left(x^{(i)}\right)-y^{(i)}\right)^2=\frac{1}{2}(X \theta-y)^T(X \theta-y) J(θ)=21i=1∑m(hθ(x(i))−y(i))2=21(Xθ−y)T(Xθ−y)
求偏导:
∇ θ J ( θ ) = ∇ θ ( 1 2 ( X θ − y ) T ( X θ − y ) ) = ∇ θ ( 1 2 ( θ T X T − y T ) ( X θ − y ) ) = ∇ θ ( 1 2 ( θ T X T X θ − θ T X T y − y T X θ + y T y ) ) = 1 2 ( 2 X T X θ − X T y − ( y T X ) T ) = X T X θ − X T y \begin{aligned} \quad \nabla_\theta J(\theta)&=\nabla_\theta\left(\frac{1}{2}(X \theta-y)^T(X \theta-y)\right) \\ &=\nabla_\theta\left(\frac{1}{2}\left(\theta^T X^T-y^T\right)(X \theta-y)\right) \\ &=\nabla_\theta\left(\frac{1}{2}\left(\theta^T X^T X \theta-\theta^T X^T y-y^T X \theta+y^T y\right)\right) \\ &=\frac{1}{2}\left(2 X^T X \theta-X^T y-\left(y^T X\right)^T\right)=X^T X \theta-X^T y \end{aligned} ∇θJ(θ)=∇θ(21(Xθ−y)T(Xθ−y))=∇θ(21(θTXT−yT)(Xθ−y))=∇θ(21(θTXTXθ−θTXTy−yTXθ+yTy))=21(2XTXθ−XTy−(yTX)T)=XTXθ−XTy
偏导等于0:
θ = ( X T X ) − 1 X T y \theta=\left(X^T X\right)^{-1} X^T y θ=(XTX)−1XTy
六、梯度下降算法
引入: 当我们得到了一个目标函数后,如何进行求解?
直接求解 ? ( 并不一定可解,线性回归可以当做是一个特例 )
常规套路: 机器学习的套路就是我交给机器一堆数据, 然后告诉它 什么样的学习方式是对的(目标函数),然后让它朝着这个方向去做
如何优化: 一口吃不成个胖子,我们要静悄悄的一步步的完成迭代 ( 每次优化一点点,累积起来就是个大成绩了)
七、参数更新方法
目标函数 :
J ( θ 0 , θ 1 ) = 1 2 m ∑ i = 1 m ( h θ ( x ( i ) ) − y ( i ) ) 2 J\left(\theta_0, \theta_1\right)=\frac{1}{2 m} \sum_{i=1}^m\left(h_\theta\left(x^{(i)}\right)-y^{(i)}\right)^2 J(θ0,θ1)=2m1i=1∑m(hθ(x(i))−y(i))2
寻找山谷的最低点,也就是我们的目标函数终点 ( 什么样的参数能使得目标函数达到极值点)
下山分几步走呢? ( 更新参数 )
(1) : 找到当前最合适的方向
(2) : 走那么一小步,走快了该" 跌倒 "了
(3):按照方向与步伐去更新我们的参数
批量梯度下降:
∂ J ( θ ) ∂ θ j = − 1 m ∑ i = 1 m ( y i − h θ ( x i ) ) x j i θ j ′ = θ j + 1 m ∑ i = 1 m ( y i − h θ ( x i ) ) x j i \frac{\partial J(\theta)}{\partial \theta_j}=-\frac{1}{m} \sum_{i=1}^m\left(y^i-h_\theta\left(x^i\right)\right) x_j^i \\ \theta_j^{\prime}=\theta_j+\frac{1}{m} \sum_{i=1}^m\left(y^i-h_\theta\left(x^i\right)\right) x_j^i ∂θj∂J(θ)=−m1i=1∑m(yi−hθ(xi))xjiθj′=θj+m1i=1∑m(yi−hθ(xi))xji
( 容易得到最优解,但是由于每次考虑所有样本,速度很慢 )
随机梯度下降 :
θ j ′ = θ j + ( y i − h θ ( x i ) ) x j i \theta_j^{\prime}=\theta_j+\left(y^i-h_\theta\left(x^i\right)\right) x_j^i θj′=θj+(yi−hθ(xi))xji
(每次找一个样本,迭代速度快,但不一定每次都朝着收敛的方向 )
小批量梯度下降法 :
θ j : = θ j − α 1 10 ∑ k = i i + 9 ( h θ ( x ( k ) ) − y ( k ) ) x j ( k ) \theta_j:=\theta_j-\alpha \frac{1}{10} \sum_{k=i}^{i+9}\left(h_\theta\left(x^{(k)}\right)-y^{(k)}\right) x_j^{(k)} θj:=θj−α101k=i∑i+9(hθ(x(k))−y(k))xj(k)
(每次更新选择一小部分数据来算,实用!)
八、优化参数设置
学习率(步长):对结果产生巨大影响,一般小一些
如何选择: 从小的时候,不行再小
批处理数量 : 32,64,128 都可以,很多 时候还得考虑内存和效率