提取接近竖直物体(粗定位)

news2024/11/24 1:25:28

由于项目的需要提取图像之中的一个接近于竖直的物体,一般的方法是进行图像分割,分割方式使用什么OTSU方式以及hsv方法等等。但是项目中使用的相机是黑白相机,会受到一定的限制。因此想到的是使用线条提取方式。线条提取方式之中最好的方法是使用canny算法,但是这里不能够将接近竖直特征进行提取,因此,此处使用了Prewitt算子进行提取,但是只用这个算法,轮廓提取不出来,就结合了一下canny算子。下面是我的思路,感觉实现过程比较麻烦,但是居然实现了[苦笑]!!!!

本次测试的案例是使用校门口的一个图片,图中存在很多的干扰,如下图所示

#include <opencv2/opencv.hpp>
#include <opencv2/highgui/highgui.hpp>
#include <iostream>
#include <opencv2/core.hpp>
#include <opencv2/highgui.hpp>
#include <opencv2/imgproc.hpp>
using namespace cv;
using namespace std;


void getPrewitt_oper(cv::Mat& getPrewitt_horizontal, cv::Mat& getPrewitt_vertical, cv::Mat& getPrewitt_Diagonal1, cv::Mat& getPrewitt_Diagonal2) {
	//水平方向
	getPrewitt_horizontal = (cv::Mat_<float>(3, 3) << -1, -1, -1, 0, 0, 0, 1, 1, 1);
	//垂直方向
	getPrewitt_vertical = (cv::Mat_<float>(3, 3) << -1, 0, 1, -1, 0, 1, -1, 0, 1);
	//对角135°
	getPrewitt_Diagonal1 = (cv::Mat_<float>(3, 3) << 0, 1, 1, -1, 0, 1, -1, -1, 0);
	//对角45°
	getPrewitt_Diagonal2 = (cv::Mat_<float>(3, 3) << -1, -1, 0, -1, 0, 1, 0, 1, 1);

	//逆时针反转180°得到卷积核
	cv::flip(getPrewitt_horizontal, getPrewitt_horizontal, -1);
	cv::flip(getPrewitt_vertical, getPrewitt_vertical, -1);
	cv::flip(getPrewitt_Diagonal1, getPrewitt_Diagonal1, -1);
	cv::flip(getPrewitt_Diagonal2, getPrewitt_Diagonal2, -1);
}

void edge_Prewitt(cv::Mat& src, cv::Mat& dst1, cv::Mat& dst2, cv::Mat& dst3, cv::Mat& dst4, cv::Mat& dst, int ddepth, double delta = 0, int borderType = cv::BORDER_DEFAULT) {
	//获取Prewitt算子
	cv::Mat getPrewitt_horizontal;
	cv::Mat getPrewitt_vertical;
	cv::Mat getPrewitt_Diagonal1;
	cv::Mat getPrewitt_Diagonal2;
	getPrewitt_oper(getPrewitt_horizontal, getPrewitt_vertical, getPrewitt_Diagonal1, getPrewitt_Diagonal2);

	//卷积得到水平方向边缘
	cv::filter2D(src, dst1, ddepth, getPrewitt_horizontal, cv::Point(-1, -1), delta, borderType);

	//卷积得到4垂直方向边缘
	cv::filter2D(src, dst2, ddepth, getPrewitt_vertical, cv::Point(-1, -1), delta, borderType);

	//卷积得到45°方向边缘
	cv::filter2D(src, dst3, ddepth, getPrewitt_Diagonal1, cv::Point(-1, -1), delta, borderType);

	//卷积得到135°方向边缘
	cv::filter2D(src, dst4, ddepth, getPrewitt_Diagonal2, cv::Point(-1, -1), delta, borderType);

	//边缘强度(近似)
	cv::convertScaleAbs(dst1, dst1); //求绝对值并转为无符号8位图
	cv::convertScaleAbs(dst2, dst2);

	cv::convertScaleAbs(dst3, dst3); //求绝对值并转为无符号8位图
	cv::convertScaleAbs(dst4, dst4);
	dst = dst1 + dst2;

}

//数组从大到小排序
void reserve(int x[], int n) {
	int i, j, temp;
	for (i = 0; i < n - 1; i++) {     //一共n个元素,则需要比较n-1次
		for (j = 0; j < n - 1 - i; j++) {     //每一个元素需要比较的次数
			if (x[i] < x[i + j + 1]) {
				temp = x[i];
				x[i] = x[i + j + 1];
				x[i + j + 1] = temp;
			}
		}
	}
}



int main()
{
	cv::Mat src = cv::imread("楼.jpg");
	if (src.empty()) {
		return -1;
	}
	cout << "??" << endl;
	if (src.channels() > 1) cv::cvtColor(src, src, CV_RGB2GRAY);
	cv::Mat dst, dst1, dst2, dst3, dst4, dst5;

	Mat src1 = cv::imread("楼.jpg");
	Mat src2 = cv::imread("楼.jpg");

	//medianBlur(src, src, 5);  //均值滤波
	GaussianBlur(src, src, Size(5, 5), 0); //高斯滤波
	cout << "??" << endl;

	//注意:要采用CV_32F,因为有些地方卷积后为负数,若用8位无符号,则会导致这些地方为0
	edge_Prewitt(src, dst1, dst2, dst3, dst4, dst, CV_32F);

	cv::namedWindow("垂直边缘", CV_WINDOW_NORMAL);
	imshow("垂直边缘", dst2);
	cout << "??" << endl;
	
	
	
	//获取结构
	cv::Mat element1 = cv::getStructuringElement(cv::MORPH_RECT, cv::Size(3, 3));

	Mat out1;
	//进行形态学开运算操作  
	morphologyEx(dst2, out1, MORPH_OPEN, element1);//形态学开运算
	cv::namedWindow("xingtai", CV_WINDOW_NORMAL);
	imshow("xingtai", out1);

	


	//第二次进行形态学操作
	edge_Prewitt(dst2, dst1, out1, dst3, dst4, dst, CV_32F);
	cv::namedWindow("垂直边缘1", CV_WINDOW_NORMAL);
	imshow("垂直边缘1", out1);
	cout << "??" << endl;

	morphologyEx(out1, out1, MORPH_OPEN, element1);//形态学开运算
	cv::namedWindow("xingtai1", CV_WINDOW_NORMAL);
	imshow("xingtai1", out1);


	//获取结构
	cv::Mat element2 = cv::getStructuringElement(cv::MORPH_ELLIPSE, cv::Size(10, 10));

	Mat out2;
	//进行形态学闭运算操作  
	morphologyEx(out1, out2, MORPH_CLOSE, element2);//形态学开运算
	cv::namedWindow("xingtai2", CV_WINDOW_NORMAL);
	imshow("xingtai2", out2);
	imwrite("xingtai2.jpg", out2);

	/*
	//膨胀运算,将细小缝隙填补上,非必要
	Mat kernel = getStructuringElement(0, Size(3, 3));
	dilate(out2, dst2, kernel);
	cv::namedWindow("膨胀", CV_WINDOW_NORMAL);
	imshow("膨胀", dst2);
	*/
	
	cv::threshold(out2, dst2, 5, 255, cv::THRESH_BINARY);
	cv::namedWindow("二值化", CV_WINDOW_NORMAL);
	imshow("二值化", dst2);

	cv::threshold(dst2, dst2, 5, 255, cv::THRESH_BINARY_INV);
	cv::namedWindow("反二值化", CV_WINDOW_NORMAL);
	imshow("反二值化", dst2);

	
	//进行形态学闭运算操作  
	morphologyEx(dst2, out2, MORPH_CLOSE, element2);//形态学开运算
	cv::namedWindow("xingtai3", CV_WINDOW_NORMAL);
	imshow("xingtai3", out2);
	imwrite("xingtai3.jpg", out2);

	/*
	cv::threshold(dst2, dst2, 5, 255, cv::THRESH_BINARY);
	cv::namedWindow("反二值化", CV_WINDOW_NORMAL);
	imshow("反二值化", dst2);
	imwrite("反二值化.jpg", dst2);
	*/

	/*
	//膨胀运算,将细小缝隙填补上,非必要
    Mat kernel = getStructuringElement(0, Size(5, 5));
	dilate(out2, out2, kernel);
	cv::namedWindow("膨胀1", CV_WINDOW_NORMAL);
	imshow("膨胀1", out2);*/

	Canny(out2, dst2, 5, 10);
	cv::namedWindow("Canny", CV_WINDOW_NORMAL);
	imshow("Canny", dst2);
	imwrite("Canny.jpg", dst2);
	

	vector<Vec4i> lines;
	HoughLinesP(dst2, lines, 1, CV_PI / 180, 50, 200, 30);
	int Length[100] = {0};//存放直线长度
	for (size_t i = 0; i < lines.size(); i++)
	{
		Vec4i I = lines[i];
		double x1 = I[0];
		double y1 = I[1];
		double x2 = I[2];
		double y2 = I[3];

		//筛选满足条件的点
		if (abs(x1 - x2) + abs(y1 - y2) > 50)
		{
			Length[i] = sqrt( (x1 - x2)*(x1 - x2) + (y1 - y2) * (y1 - y2));
			//将满足条件的点画出
			line(src1, Point2d(x1, y1), Point2d(x2, y2), Scalar(0, 255, 255), 2);

			cout << " " << "(" << x1 << "," << y1 << ")" << " " << "(" << x2 << "," << y2 << ")" << endl;
			//line(canny, Point2d(x1, y1), Point2d(x2, y2), Scalar(0, 255, 255), 2);
		}
	}

	Mat imgShow;
	imgShow = src1;
	resize(imgShow, imgShow, Size(imgShow.cols / 4, imgShow.rows / 4));
	imshow("imgShow", imgShow);
	imwrite("shuchu.png", src1);


	reserve(Length, 100);
	for (int i = 0; i < 100; i++) {
		cout << "长度"<<Length[i] << endl;   //输出排序后的数组元素
	}

	for (size_t i = 0; i < lines.size(); i++)
	{
		Vec4i I = lines[i];
		double x1 = I[0];
		double y1 = I[1];
		double x2 = I[2];
		double y2 = I[3];
		cout << "sdjk" << endl;
		cout << int(sqrt((x1 - x2)*(x1 - x2) + (y1 - y2) * (y1 - y2))) << endl;
		//筛选满足条件的点
		if ((int(sqrt((x1 - x2)*(x1 - x2) + (y1 - y2) * (y1 - y2))) == Length[0] ) || (int(sqrt((x1 - x2)*(x1 - x2) + (y1 - y2) * (y1 - y2))) == Length[1]))
		{
			
			//将满足条件的点画出
			line(src2, Point2d(x1, y1), Point2d(x2, y2), Scalar(0, 255, 255), 2);

			cout << "djfkljsa " << "(" << x1 << "," << y1 << ")" << " " << "(" << x2 << "," << y2 << ")" << endl;
			//line(canny, Point2d(x1, y1), Point2d(x2, y2), Scalar(0, 255, 255), 2);
		}
	}
	
	imgShow = src2;
	resize(imgShow, imgShow, Size(imgShow.cols / 4, imgShow.rows / 4));
	imshow("imgShow2", imgShow);
	imwrite("shuchu2.png", src2);





	waitKey(0);
	return 0;
}

调试过程:本次在进行调试过程之中进行了两次垂直检测迭代,进一步去排除水平线的干扰.使用形态学操作去除图片之中的空洞等等.

第一次进行垂直检测,注意这个地方只能够用特定的算子进行垂直检测,别的算子没有这个效果. 

为了减少图片之中白色空洞的干扰,使用开操作.

重复上述操作,进一步排除水平线的干扰.

接下来是进行闭操作,将图中的白色线条尽可能连在一起,上图之中的楼左侧的线有一些断开了.

闭操作的缺陷是会产生小白点点.如下二值化过程

再进行一次反二值化,因为我不会用别的算子结合霍夫直线检测检测出来直线,只能转回去进行操作. 

形态学操作,去除白点

 canny一下检测出来轮廓

显示全部直线

 直线提取,我的方式是提取最长的两段直线。

 在上述操作完成之后,得到了物体的粗定位直线。

但是上面的算法还是存在相应的问题,换了一个别的图像可能就检测的不准。发现问题就是出在了二值化的过程。

为了修正上方的算法的失败,使用提取外部轮廓的方式进行求取,将代码改了改。
 

#include <opencv2/opencv.hpp>
#include <opencv2/highgui/highgui.hpp>
#include <iostream>
#include <opencv2/core.hpp>
#include <opencv2/highgui.hpp>
#include <opencv2/imgproc.hpp>
using namespace cv;
using namespace std;


void getPrewitt_oper(cv::Mat& getPrewitt_horizontal, cv::Mat& getPrewitt_vertical, cv::Mat& getPrewitt_Diagonal1, cv::Mat& getPrewitt_Diagonal2) {
	//水平方向
	getPrewitt_horizontal = (cv::Mat_<float>(3, 3) << -1, -1, -1, 0, 0, 0, 1, 1, 1);
	//垂直方向
	getPrewitt_vertical = (cv::Mat_<float>(3, 3) << -1, 0, 1, -1, 0, 1, -1, 0, 1);
	//对角135°
	getPrewitt_Diagonal1 = (cv::Mat_<float>(3, 3) << 0, 1, 1, -1, 0, 1, -1, -1, 0);
	//对角45°
	getPrewitt_Diagonal2 = (cv::Mat_<float>(3, 3) << -1, -1, 0, -1, 0, 1, 0, 1, 1);

	//逆时针反转180°得到卷积核
	cv::flip(getPrewitt_horizontal, getPrewitt_horizontal, -1);
	cv::flip(getPrewitt_vertical, getPrewitt_vertical, -1);
	cv::flip(getPrewitt_Diagonal1, getPrewitt_Diagonal1, -1);
	cv::flip(getPrewitt_Diagonal2, getPrewitt_Diagonal2, -1);
}

void edge_Prewitt(cv::Mat& src, cv::Mat& dst1, cv::Mat& dst2, cv::Mat& dst3, cv::Mat& dst4, cv::Mat& dst, int ddepth, double delta = 0, int borderType = cv::BORDER_DEFAULT) {
	//获取Prewitt算子
	cv::Mat getPrewitt_horizontal;
	cv::Mat getPrewitt_vertical;
	cv::Mat getPrewitt_Diagonal1;
	cv::Mat getPrewitt_Diagonal2;
	getPrewitt_oper(getPrewitt_horizontal, getPrewitt_vertical, getPrewitt_Diagonal1, getPrewitt_Diagonal2);

	//卷积得到水平方向边缘
	cv::filter2D(src, dst1, ddepth, getPrewitt_horizontal, cv::Point(-1, -1), delta, borderType);

	//卷积得到4垂直方向边缘
	cv::filter2D(src, dst2, ddepth, getPrewitt_vertical, cv::Point(-1, -1), delta, borderType);

	//卷积得到45°方向边缘
	cv::filter2D(src, dst3, ddepth, getPrewitt_Diagonal1, cv::Point(-1, -1), delta, borderType);

	//卷积得到135°方向边缘
	cv::filter2D(src, dst4, ddepth, getPrewitt_Diagonal2, cv::Point(-1, -1), delta, borderType);

	//边缘强度(近似)
	cv::convertScaleAbs(dst1, dst1); //求绝对值并转为无符号8位图
	cv::convertScaleAbs(dst2, dst2);

	cv::convertScaleAbs(dst3, dst3); //求绝对值并转为无符号8位图
	cv::convertScaleAbs(dst4, dst4);
	dst = dst1 + dst2;

}

//数组从大到小排序
void reserve(int x[], int n) {
	int i, j, temp;
	for (i = 0; i < n - 1; i++) {     //一共n个元素,则需要比较n-1次
		for (j = 0; j < n - 1 - i; j++) {     //每一个元素需要比较的次数
			if (x[i] < x[i + j + 1]) {
				temp = x[i];
				x[i] = x[i + j + 1];
				x[i + j + 1] = temp;
			}
		}
	}
}



int main()
{
	cv::Mat src = cv::imread("楼.jpg");
	if (src.empty()) {
		return -1;
	}
	cout << "??" << endl;
	if (src.channels() > 1) cv::cvtColor(src, src, CV_RGB2GRAY);
	cv::Mat dst, dst1, dst2, dst3, dst4, dst5;

	Mat src1 = cv::imread("楼.jpg");
	Mat src2 = cv::imread("楼.jpg");

	//medianBlur(src, src, 5);  //均值滤波
	GaussianBlur(src, src, Size(5, 5), 0); //高斯滤波
	cout << "??" << endl;

	//注意:要采用CV_32F,因为有些地方卷积后为负数,若用8位无符号,则会导致这些地方为0
	edge_Prewitt(src, dst1, dst2, dst3, dst4, dst, CV_32F);

	cv::namedWindow("垂直边缘", CV_WINDOW_NORMAL);
	imshow("垂直边缘", dst2);
	cout << "??" << endl;

	

	/*
	Mat shdjk;
	cv::threshold(dst2, shdjk, 25, 255, cv::THRESH_BINARY);
	cv::namedWindow("二值化1212", CV_WINDOW_NORMAL);
	imshow("二值化1212", shdjk);
	*/

	//获取结构
	cv::Mat element1 = cv::getStructuringElement(cv::MORPH_RECT, cv::Size(3, 3));

	Mat out1;
	//进行形态学开运算操作  
	morphologyEx(dst2, out1, MORPH_OPEN, element1);//形态学开运算
	cv::namedWindow("xingtai", CV_WINDOW_NORMAL);
	imshow("xingtai", out1);


	Mat out2;
	//第二次进行形态学操作
	edge_Prewitt(out1, dst1, out1, dst3, dst4, dst, CV_32F);
	cv::namedWindow("垂直边缘1", CV_WINDOW_NORMAL);
	imshow("垂直边缘1", out1);
	cout << "??" << endl;


	/*
	morphologyEx(out1, out1, MORPH_OPEN, element1);//形态学开运算
	cv::namedWindow("xingtai1", CV_WINDOW_NORMAL);
	imshow("xingtai1", out1);

	//获取结构
	cv::Mat element2 = cv::getStructuringElement(cv::MORPH_ELLIPSE, cv::Size(10, 10));

	
	//进行形态学闭运算操作  
	morphologyEx(out1, out2, MORPH_CLOSE, element2);//形态学闭合运算
	cv::namedWindow("xingtai2", CV_WINDOW_NORMAL);
	imshow("xingtai2", out2);
	imwrite("xingtai2.jpg", out2);
	
	waitKey(0);
	*/
	std::vector<std::vector<cv::Point>> contours;
	std::vector<cv::Vec4i> hierarchy;
	findContours(out1, contours, CV_RETR_EXTERNAL, CV_CHAIN_APPROX_NONE);
	double maxArea = 0;
	int index = 0;
	vector<cv::Point> maxContour;
	for (size_t i = 0; i < contours.size(); i++)
	{
		double area = cv::contourArea(contours[i]);
		if (area > maxArea)
		{
			maxArea = area;
			maxContour = contours[i];
			index = i;
		}
	}
	drawContours(src1, contours, index, Scalar(255));    // 参数
	cv::namedWindow("test", CV_WINDOW_NORMAL);
	imshow("test", src1);
	waitKey(0);
	/*
	Mat shdjk;
	cv::threshold(out1, shdjk, 10, 255, cv::THRESH_BINARY);
	cv::namedWindow("二值化1212", CV_WINDOW_NORMAL);
	imshow("二值化1212", shdjk);

	std::vector<std::vector<cv::Point>> contours;
	std::vector<cv::Vec4i> hierarchy;
	cv::findContours(shdjk, contours, hierarchy, cv::RETR_EXTERNAL, cv::CHAIN_APPROX_NONE);  //只找最外层轮廓


	std::vector<std::vector<cv::Point>> approxCurves(contours.size());
	for (int i = 0; i < contours.size(); ++i) {  //绘制逼近后的轮廓
		double epsilon = 0.1 * cv::arcLength(contours[i], true);
		cv::approxPolyDP(contours[i], approxCurves[i], epsilon, true);

		cv::drawContours(src1, approxCurves, i, cv::Scalar(0, 255, 0), 2);
	}
	cv::namedWindow("success", CV_WINDOW_NORMAL);
	imshow("success", src1);

	cv::waitKey();

	*/

	

	

	//
	/*
	Mat dhfjua;
	cv::threshold(out2, dhfjua, 15, 255, cv::THRESH_BINARY);
	cv::namedWindow("二值化000", CV_WINDOW_NORMAL);
	imshow("二值化000", dhfjua);
	*/
	/*
	//膨胀运算,将细小缝隙填补上,非必要
	Mat kernel = getStructuringElement(0, Size(3, 3));
	dilate(out2, dst2, kernel);
	cv::namedWindow("膨胀", CV_WINDOW_NORMAL);
	imshow("膨胀", dst2);
	*/
	/*0
	cv::threshold(out2, dst2, 5, 255, cv::THRESH_BINARY);
	cv::namedWindow("二值化", CV_WINDOW_NORMAL);
	imshow("二值化", dst2);

	cv::threshold(dst2, dst2, 5, 255, cv::THRESH_BINARY_INV);
	cv::namedWindow("反二值化", CV_WINDOW_NORMAL);
	imshow("反二值化", dst2);
	*/
	/*
	Mat out3;
	//进行形态学闭运算操作  
	morphologyEx(dst2, out3, MORPH_CLOSE, element2);//形态学开运算
	cv::namedWindow("xingtai3", CV_WINDOW_NORMAL);
	imshow("xingtai3", out3);
	imwrite("xingtai3.jpg", out3);
	*/

	waitKey(0);
	vector<Vec4i> lines;
	HoughLinesP(src1, lines, 1, CV_PI / 180, 100, 400, 30);
	int Length[1000] = { 0 };//存放直线长度
	for (size_t i = 0; i < lines.size(); i++)
	{
		Vec4i I = lines[i];
		double x1 = I[0];
		double y1 = I[1];
		double x2 = I[2];
		double y2 = I[3];

		//筛选满足条件的点
		if (abs(x1 - x2) + abs(y1 - y2) > 50)
		{
			Length[i] = sqrt((x1 - x2)*(x1 - x2) + (y1 - y2) * (y1 - y2));
			//将满足条件的点画出
			line(src1, Point2d(x1, y1), Point2d(x2, y2), Scalar(0, 255, 255), 2);

			cout << " " << "(" << x1 << "," << y1 << ")" << " " << "(" << x2 << "," << y2 << ")" << endl;
			//line(canny, Point2d(x1, y1), Point2d(x2, y2), Scalar(0, 255, 255), 2);
		}
	}

	

	Mat imgShow;
	imgShow = src1;
	resize(imgShow, imgShow, Size(imgShow.cols / 4, imgShow.rows / 4));
	imshow("imgShow", imgShow);
	imwrite("shuchu.png", src1);


	reserve(Length, 1000);
	for (int i = 0; i < 1000; i++) {
		cout << "长度" << Length[i] << endl;   //输出排序后的数组元素
	}

	for (size_t i = 0; i < lines.size(); i++)
	{
		Vec4i I = lines[i];
		double x1 = I[0];
		double y1 = I[1];
		double x2 = I[2];
		double y2 = I[3];
		cout << "sdjk" << endl;
		cout << int(sqrt((x1 - x2)*(x1 - x2) + (y1 - y2) * (y1 - y2))) << endl;
		//筛选满足条件的点
		if ((int(sqrt((x1 - x2)*(x1 - x2) + (y1 - y2) * (y1 - y2))) == Length[0]) || (int(sqrt((x1 - x2)*(x1 - x2) + (y1 - y2) * (y1 - y2))) == Length[1]))
		{

			//将满足条件的点画出
			line(src2, Point2d(x1, y1), Point2d(x2, y2), Scalar(0, 255, 255), 2);

			cout << "djfkljsa " << "(" << x1 << "," << y1 << ")" << " " << "(" << x2 << "," << y2 << ")" << endl;
			//line(canny, Point2d(x1, y1), Point2d(x2, y2), Scalar(0, 255, 255), 2);
		}
	}

	imgShow = src2;
	resize(imgShow, imgShow, Size(imgShow.cols / 4, imgShow.rows / 4));
	imshow("imgShow2", imgShow);
	imwrite("shuchu2.png", src2);





	waitKey(0);
	return 0;
}

效果还是不好,问题就是出在了相应的一个二值化的过程,因此,想到使用区域增长算法改进

#include <iostream>
#include <string>
#include <list>
#include <vector>
#include <map>
#include <stack>
#include <opencv2/core/core.hpp>
#include <opencv2/highgui/highgui.hpp>
#include <opencv2/imgproc/imgproc.hpp>


using namespace std;
using namespace cv;


//------------------------------【两步法新改进版】----------------------------------------------
// 对二值图像进行连通区域标记,从1开始标号
void  Two_PassNew(const Mat &bwImg, Mat &labImg)
{
	assert(bwImg.type() == CV_8UC1);
	labImg.create(bwImg.size(), CV_32SC1);   //bwImg.convertTo( labImg, CV_32SC1 );
	labImg = Scalar(0);
	labImg.setTo(Scalar(1), bwImg);
	assert(labImg.isContinuous());
	const int Rows = bwImg.rows - 1, Cols = bwImg.cols - 1;
	int label = 1;
	vector<int> labelSet;
	labelSet.push_back(0);
	labelSet.push_back(1);
	//the first pass
	int *data_prev = (int*)labImg.data;   //0-th row : int* data_prev = labImg.ptr<int>(i-1);
	int *data_cur = (int*)(labImg.data + labImg.step); //1-st row : int* data_cur = labImg.ptr<int>(i);
	for (int i = 1; i < Rows; i++)
	{
		data_cur++;
		data_prev++;
		for (int j = 1; j < Cols; j++, data_cur++, data_prev++)
		{
			if (*data_cur != 1)
				continue;
			int left = *(data_cur - 1);
			int up = *data_prev;
			int neighborLabels[2];
			int cnt = 0;
			if (left > 1)
				neighborLabels[cnt++] = left;
			if (up > 1)
				neighborLabels[cnt++] = up;
			if (!cnt)
			{
				labelSet.push_back(++label);
				labelSet[label] = label;
				*data_cur = label;
				continue;
			}
			int smallestLabel = neighborLabels[0];
			if (cnt == 2 && neighborLabels[1] < smallestLabel)
				smallestLabel = neighborLabels[1];
			*data_cur = smallestLabel;
			// 保存最小等价表
			for (int k = 0; k < cnt; k++)
			{
				int tempLabel = neighborLabels[k];
				int& oldSmallestLabel = labelSet[tempLabel];  //这里的&不是取地址符号,而是引用符号
				if (oldSmallestLabel > smallestLabel)
				{
					labelSet[oldSmallestLabel] = smallestLabel;
					oldSmallestLabel = smallestLabel;
				}
				else if (oldSmallestLabel < smallestLabel)
					labelSet[smallestLabel] = oldSmallestLabel;
			}
		}
		data_cur++;
		data_prev++;
	}
	//更新等价队列表,将最小标号给重复区域
	for (size_t i = 2; i < labelSet.size(); i++)
	{
		int curLabel = labelSet[i];
		int prelabel = labelSet[curLabel];
		while (prelabel != curLabel)
		{
			curLabel = prelabel;
			prelabel = labelSet[prelabel];
		}
		labelSet[i] = curLabel;
	}
	//second pass
	data_cur = (int*)labImg.data;
	for (int i = 0; i < Rows; i++)
	{
		for (int j = 0; j < bwImg.cols - 1; j++, data_cur++)
			*data_cur = labelSet[*data_cur];
		data_cur++;
	}
}

//-------------------------------【老版两步法】-------------------------------------------
void Two_PassOld(const cv::Mat& _binImg, cv::Mat& _lableImg)
{
	//connected component analysis (4-component)
	//use two-pass algorithm
	//1. first pass: label each foreground pixel with a label
	//2. second pass: visit each labeled pixel and merge neighbor label
	//
	//foreground pixel: _binImg(x,y) = 1
	//background pixel: _binImg(x,y) = 0

	if (_binImg.empty() || _binImg.type() != CV_8UC1)
	{
		return;
	}

	// 1. first pass
	_lableImg.release();
	_binImg.convertTo(_lableImg, CV_32SC1);

	int label = 1;  // start by 2
	std::vector<int> labelSet;
	labelSet.push_back(0);   //background: 0
	labelSet.push_back(1);   //foreground: 1

	int rows = _binImg.rows - 1;
	int cols = _binImg.cols - 1;
	for (int i = 1; i < rows; i++)
	{
		int* data_preRow = _lableImg.ptr<int>(i - 1);
		int* data_curRow = _lableImg.ptr<int>(i);
		for (int j = 1; j < cols; j++)
		{
			if (data_curRow[j] == 1)
			{
				std::vector<int> neighborLabels;
				neighborLabels.reserve(2); //reserve(n)  预分配n个元素的存储空间
				int leftPixel = data_curRow[j - 1];
				int upPixel = data_preRow[j];
				if (leftPixel > 1)
				{
					neighborLabels.push_back(leftPixel);
				}
				if (upPixel > 1)
				{
					neighborLabels.push_back(upPixel);
				}
				if (neighborLabels.empty())
				{
					labelSet.push_back(++label);   //assign to a new label
					data_curRow[j] = label;
					labelSet[label] = label;
				}
				else
				{
					std::sort(neighborLabels.begin(), neighborLabels.end());
					int smallestLabel = neighborLabels[0];
					data_curRow[j] = smallestLabel;

					//save equivalence
					for (size_t k = 1; k < neighborLabels.size(); k++)
					{
						int tempLabel = neighborLabels[k];
						int& oldSmallestLabel = labelSet[tempLabel];
						if (oldSmallestLabel > smallestLabel)
						{
							labelSet[oldSmallestLabel] = smallestLabel;
							oldSmallestLabel = smallestLabel;
						}
						else if (oldSmallestLabel < smallestLabel)
						{
							labelSet[smallestLabel] = oldSmallestLabel;
						}
					}
				}

			}
		}
	}
	//update equivalent labels
	//assigned with the smallest label in each equivalent label set
	for (size_t i = 2; i < labelSet.size(); i++)
	{
		int curLabel = labelSet[i];
		int prelabel = labelSet[curLabel];
		while (prelabel != curLabel)
		{
			curLabel = prelabel;
			prelabel = labelSet[prelabel];
		}
		labelSet[i] = curLabel;
	}

	//2. second pass
	for (int i = 0; i < rows; i++)
	{
		int *data = _lableImg.ptr<int>(i);
		for (int j = 0; j < cols; j++)
		{
			int& pixelLabel = data[j];
			pixelLabel = labelSet[pixelLabel];
		}
	}
}


//---------------------------------【种子填充法老版】-------------------------------
void SeedFillOld(const cv::Mat& binImg, cv::Mat& lableImg)   //种子填充法
{
	// 4邻接方法


	if (binImg.empty() ||
		binImg.type() != CV_8UC1)
	{
		return;
	}

	lableImg.release();
	binImg.convertTo(lableImg, CV_32SC1);

	int label = 1;

	int rows = binImg.rows - 1;
	int cols = binImg.cols - 1;
	for (int i = 1; i < rows - 1; i++)
	{
		int* data = lableImg.ptr<int>(i);
		for (int j = 1; j < cols - 1; j++)
		{
			if (data[j] == 1)
			{
				std::stack<std::pair<int, int>> neighborPixels;
				neighborPixels.push(std::pair<int, int>(i, j));     // 像素位置: <i,j>
				++label;  // 没有重复的团,开始新的标签
				while (!neighborPixels.empty())
				{
					std::pair<int, int> curPixel = neighborPixels.top(); //如果与上一行中一个团有重合区域,则将上一行的那个团的标号赋给它
					int curX = curPixel.first;
					int curY = curPixel.second;
					lableImg.at<int>(curX, curY) = label;

					neighborPixels.pop();

					if (lableImg.at<int>(curX, curY - 1) == 1)
					{//左边
						neighborPixels.push(std::pair<int, int>(curX, curY - 1));
					}
					if (lableImg.at<int>(curX, curY + 1) == 1)
					{// 右边
						neighborPixels.push(std::pair<int, int>(curX, curY + 1));
					}
					if (lableImg.at<int>(curX - 1, curY) == 1)
					{// 上边
						neighborPixels.push(std::pair<int, int>(curX - 1, curY));
					}
					if (lableImg.at<int>(curX + 1, curY) == 1)
					{// 下边
						neighborPixels.push(std::pair<int, int>(curX + 1, curY));
					}
				}
			}
		}
	}

}




//-------------------------------------------【种子填充法新版】---------------------------
void SeedFillNew(const cv::Mat& _binImg, cv::Mat& _lableImg)
{
	// connected component analysis(4-component)
	// use seed filling algorithm
	// 1. begin with a forgeground pixel and push its forground neighbors into a stack;
	// 2. pop the pop pixel on the stack and label it with the same label until the stack is empty
	// 
	//  forground pixel: _binImg(x,y)=1
	//  background pixel: _binImg(x,y) = 0


	if (_binImg.empty() ||
		_binImg.type() != CV_8UC1)
	{
		return;
	}

	_lableImg.release();
	_binImg.convertTo(_lableImg, CV_32SC1);

	int label = 0; //start by 1

	int rows = _binImg.rows;
	int cols = _binImg.cols;

	Mat mask(rows, cols, CV_8UC1);
	mask.setTo(0);
	int *lableptr;
	for (int i = 0; i < rows; i++)
	{
		int* data = _lableImg.ptr<int>(i);
		uchar *masKptr = mask.ptr<uchar>(i);
		for (int j = 0; j < cols; j++)
		{
			if (data[j] == 255 && mask.at<uchar>(i, j) != 1)
			{
				mask.at<uchar>(i, j) = 1;
				std::stack<std::pair<int, int>> neighborPixels;
				neighborPixels.push(std::pair<int, int>(i, j)); // pixel position: <i,j>
				++label; //begin with a new label
				while (!neighborPixels.empty())
				{
					//get the top pixel on the stack and label it with the same label
					std::pair<int, int> curPixel = neighborPixels.top();
					int curY = curPixel.first;
					int curX = curPixel.second;
					_lableImg.at<int>(curY, curX) = label;

					//pop the top pixel
					neighborPixels.pop();

					//push the 4-neighbors(foreground pixels)

					if (curX - 1 >= 0)
					{
						if (_lableImg.at<int>(curY, curX - 1) == 255 && mask.at<uchar>(curY, curX - 1) != 1) //leftpixel
						{
							neighborPixels.push(std::pair<int, int>(curY, curX - 1));
							mask.at<uchar>(curY, curX - 1) = 1;
						}
					}
					if (curX + 1 <= cols - 1)
					{
						if (_lableImg.at<int>(curY, curX + 1) == 255 && mask.at<uchar>(curY, curX + 1) != 1)
							// right pixel
						{
							neighborPixels.push(std::pair<int, int>(curY, curX + 1));
							mask.at<uchar>(curY, curX + 1) = 1;
						}
					}
					if (curY - 1 >= 0)
					{
						if (_lableImg.at<int>(curY - 1, curX) == 255 && mask.at<uchar>(curY - 1, curX) != 1)
							// up pixel
						{
							neighborPixels.push(std::pair<int, int>(curY - 1, curX));
							mask.at<uchar>(curY - 1, curX) = 1;
						}
					}
					if (curY + 1 <= rows - 1)
					{
						if (_lableImg.at<int>(curY + 1, curX) == 255 && mask.at<uchar>(curY + 1, curX) != 1)
							//down pixel
						{
							neighborPixels.push(std::pair<int, int>(curY + 1, curX));
							mask.at<uchar>(curY + 1, curX) = 1;
						}
					}
				}
			}
		}
	}
}


//---------------------------------【颜色标记程序】-----------------------------------
//彩色显示
cv::Scalar GetRandomColor()
{
	uchar r = 255 * (rand() / (1.0 + RAND_MAX));
	uchar g = 255 * (rand() / (1.0 + RAND_MAX));
	uchar b = 255 * (rand() / (1.0 + RAND_MAX));
	return cv::Scalar(b, g, r);
}


void LabelColor(const cv::Mat& labelImg, cv::Mat& colorLabelImg)
{
	int num = 0;
	if (labelImg.empty() ||
		labelImg.type() != CV_32SC1)
	{
		return;
	}

	std::map<int, cv::Scalar> colors;

	int rows = labelImg.rows;
	int cols = labelImg.cols;

	colorLabelImg.release();
	colorLabelImg.create(rows, cols, CV_8UC3);
	colorLabelImg = cv::Scalar::all(0);

	for (int i = 0; i < rows; i++)
	{
		const int* data_src = (int*)labelImg.ptr<int>(i);
		uchar* data_dst = colorLabelImg.ptr<uchar>(i);
		for (int j = 0; j < cols; j++)
		{
			int pixelValue = data_src[j];
			if (pixelValue > 1)
			{
				if (colors.count(pixelValue) <= 0)
				{
					colors[pixelValue] = GetRandomColor();
					num++;
				}

				cv::Scalar color = colors[pixelValue];
				*data_dst++ = color[0];
				*data_dst++ = color[1];
				*data_dst++ = color[2];
			}
			else
			{
				data_dst++;
				data_dst++;
				data_dst++;
			}
		}
	}
	printf("color num : %d \n", num);
}

//------------------------------------------【测试主程序】-------------------------------------
int main()
{

	cv::Mat binImage = cv::imread("sda.jpg", 0);
	//cv::threshold(binImage, binImage, 50, 1, CV_THRESH_BINARY);
	cv::Mat labelImg;
	double time;
	time = getTickCount();
	
	SeedFillNew(binImage, labelImg);
	time = 1000 * ((double)getTickCount() - time) / getTickFrequency();
	cout << std::fixed << time << "ms" << endl;
	//彩色显示
	/*
	cv::Mat colorLabelImg;
	LabelColor(labelImg, colorLabelImg);
	cv::imshow("colorImg", colorLabelImg);
	*/
	//灰度显示
	cv::Mat grayImg;
	labelImg *= 10;
	labelImg.convertTo(grayImg, CV_8UC1);
	cv::imshow("labelImg", grayImg);
	double minval, maxval;
	minMaxLoc(labelImg, &minval, &maxval);
	cout << "minval" << minval << endl;
	cout << "maxval" << maxval << endl;
	cv::waitKey(0);
	return 0;
}

终于知道是啥原因了,我在进行Prewitt算子对边缘进行粗定位检测过后,没有进行去噪处理,一定要把图像转换为二值图像,就方便多了。并且还要记住,霍夫检测的直线像素是255白线才可以,经过长时间的试错终于解决了。输入原图像如下所示,我这里使用的去噪对比了四种,但是下面这种是最好的。Opencv 非局部降噪_51CTO博客_opencv降噪Opencv 非局部降噪,opencv自带的非局部降噪算法:CV_EXPORTS_WvoidfastNlMeansDenoising(InputArraysrc,OutputArraydst,floath=3,inttemplateWindowSize=7,intsearchWindowSize=21);h是过滤强度,templateWindowSize是分块大小,searchWindowSize是搜索区域大小。应用实例intmain(){MatI..https://blog.51cto.com/u_15458280/4843576

 

#include<opencv2/opencv.hpp>
#include<iostream>
using namespace std;
using namespace cv;

//数组从大到小排序
void reserve(int x[], int n) {
	int i, j, temp;
	for (i = 0; i < n - 1; i++) {     //一共n个元素,则需要比较n-1次
		for (j = 0; j < n - 1 - i; j++) {     //每一个元素需要比较的次数
			if (x[i] < x[i + j + 1]) {
				temp = x[i];
				x[i] = x[i + j + 1];
				x[i + j + 1] = temp;
			}
		}
	}
}

void add_salt_pepper_noise(Mat &image) {
	RNG rng(12345);
	int h = image.rows;
	int w = image.cols;
	int nums = 10000;
	for (int i = 0; i < nums; i++) {
		int x = rng.uniform(0, w);
		int y = rng.uniform(0, h);
		if (i % 2 == 1) {
			image.at<Vec3b>(y, x) = Vec3b(255, 255, 255);
		}
		else {
			image.at<Vec3b>(y, x) = Vec3b(0, 0, 0);
		}
	}
	imshow("salt pepper", image);
}

void gaussian_noise(Mat &image) {
	Mat noise = Mat::zeros(image.size(), image.type());
	randn(noise, (15, 15, 15), (30, 30, 30));
	Mat dst;
	add(image, noise, dst);
	imshow("gaussian noise", dst);
	dst.copyTo(image);
}

Mat convertTo3Channels(const Mat& binImg)
{
	Mat three_channel = Mat::zeros(binImg.rows, binImg.cols, CV_8UC3);
	vector<Mat> channels;
	for (int i = 0; i < 3; i++)
	{
		channels.push_back(binImg);
	}
	merge(channels, three_channel);
	return three_channel;
}

int main(int argc, char*argv[])
{
	//加载图像
	Mat img, gray_image, dst;
	img = imread("垂直边缘.jpg");
	 Mat img1 = imread("垂直边缘.jpg");
	//判断图像是否导入成功
	if (img.empty())
	{
		cout << "加载失败" << endl;
		return -1;
	}
	//显示图像
	namedWindow("original image", WINDOW_AUTOSIZE);
	imshow("original image", img);
	//转换灰度图像
	cvtColor(img, gray_image, COLOR_BGR2GRAY);
	//获取灰度图像宽度和高度
	int width = gray_image.cols;
	int height = gray_image.rows;
	//遍历像素值(单通道)
	for (int row = 0; row < height; row++)
	{
		for (int col = 0; col < width; col++)
		{
			int gray = gray_image.at<uchar>(row, col);
			gray_image.at<uchar>(row, col) = 255 - gray;	//图像取反
		};
	};
	namedWindow("inv_gray_image", WINDOW_AUTOSIZE);
	imshow("inv_gray_image", gray_image);


	Mat sh;
	
	fastNlMeansDenoising(gray_image, sh, 21, 7, 21);
	namedWindow("inv_gray_image1", WINDOW_AUTOSIZE);
	imshow("inv_gray_image1", sh);
	
	
	waitKey(50);

	
	//Mat s;
	//获取灰度图像宽度和高度
	 width = sh.cols;
	 height = sh.rows;
	//遍历像素值(单通道)
	for (int row = 0; row < height; row++)
	{
		for (int col = 0; col < width; col++)
		{
			int gray = sh.at<uchar>(row, col);
			sh.at<uchar>(row, col) = 255 - gray;	//图像取反
		};
	};
	namedWindow("inv_gray_image2", WINDOW_AUTOSIZE);
	imshow("inv_gray_image2", sh);

	
	cv::threshold(sh, sh, 50, 255, cv::THRESH_BINARY);
	cv::namedWindow("二值化", CV_WINDOW_NORMAL);
	imshow("二值化", sh);

	vector<Vec4i> lines;
	HoughLinesP(sh, lines, 1, CV_PI / 180, 50,100, 5);
	int Length[100] = { 0 };//存放直线长度
	for (size_t i = 0; i < lines.size(); i++)
	{
		Vec4i I = lines[i];
		double x1 = I[0];
		double y1 = I[1];
		double x2 = I[2];
		double y2 = I[3];

		//筛选满足条件的点
		if (abs(x1 - x2) + abs(y1 - y2) > 50)
		{
			Length[i] = sqrt((x1 - x2)*(x1 - x2) + (y1 - y2) * (y1 - y2));
			//将满足条件的点画出
			line(img, Point2d(x1, y1), Point2d(x2, y2), Scalar(0, 255, 255), 2);

			cout << " " << "(" << x1 << "," << y1 << ")" << " " << "(" << x2 << "," << y2 << ")" << endl;
			//line(canny, Point2d(x1, y1), Point2d(x2, y2), Scalar(0, 255, 255), 2);
		}
	}

	Mat imgShow;
	imgShow = img;
	resize(imgShow, imgShow, Size(imgShow.cols / 4, imgShow.rows / 4));
	imshow("imgShow", imgShow);
	imwrite("shuchu.png", imgShow);


	reserve(Length, 100);
	for (int i = 0; i < 100; i++) {
		cout << "长度" << Length[i] << endl;   //输出排序后的数组元素
	}

	for (size_t i = 0; i < lines.size(); i++)
	{
		Vec4i I = lines[i];
		double x1 = I[0];
		double y1 = I[1];
		double x2 = I[2];
		double y2 = I[3];
		cout << "sdjk" << endl;
		cout << int(sqrt((x1 - x2)*(x1 - x2) + (y1 - y2) * (y1 - y2))) << endl;
		//筛选满足条件的点
		if ((int(sqrt((x1 - x2)*(x1 - x2) + (y1 - y2) * (y1 - y2))) == Length[0]) || (int(sqrt((x1 - x2)*(x1 - x2) + (y1 - y2) * (y1 - y2))) == Length[1]))
		{

			//将满足条件的点画出
			line(img1, Point2d(x1, y1), Point2d(x2, y2), Scalar(0, 255, 255), 2);

			cout << "djfkljsa " << "(" << x1 << "," << y1 << ")" << " " << "(" << x2 << "," << y2 << ")" << endl;
			//line(canny, Point2d(x1, y1), Point2d(x2, y2), Scalar(0, 255, 255), 2);
		}
	}

	imgShow = img1;
	resize(imgShow, imgShow, Size(imgShow.cols / 4, imgShow.rows / 4));
	imshow("imgShow2", imgShow);
	imwrite("shuchu2.png", imgShow);
	waitKey(0);
	return 0;
};


结果图如下所示:

 ​​​​​​​

 终于弄出来了,去干饭。

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.coloradmin.cn/o/333967.html

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈,一经查实,立即删除!

相关文章

102-并发编程详解(中篇)

这里续写上一章博客 Phaser新特性 &#xff1a; 特性1&#xff1a;动态调整线程个数 CyclicBarrier 所要同步的线程个数是在构造方法中指定的&#xff0c;之后不能更改&#xff0c;而 Phaser 可以在运行期间动态地 调整要同步的线程个数&#xff0c;Phaser 提供了下面这些方…

Quantum 构建工具使用新的 TTP 投递 Agent Tesla

Zscaler 的研究人员发现暗网上正在出售名为 Quantum Builder 的构建工具&#xff0c;该工具可以投递 .NET 远控木马 Agent Tesla。与过去的攻击行动相比&#xff0c;本次攻击转向使用 LNK 文件。 Quantum Builder 能够创建恶意文件&#xff0c;如 LNK、HTA 与 PowerShell&…

clickhouse集群安装

单机安装 yum install yum-utilsrpm --import https://repo.clickhouse.com/CLICKHOUSE-KEY.GPGyum-config-manager --add-repo https://repo.clickhouse.com/rpm/clickhouse.reposudo yum install clickhouse-server clickhouse-client 配置文件 vim /etc/clickhouse-serve…

FFmpeg集成qsv的编译安装

文章目录FFmpeg集成qsv的编译安装一、参考二、编译安装流程1. LibVA 和 Media-Driver 的安装2. Intel Media SDK 编译3. ffmpeg的编译安装4. 验证安装FFmpeg集成qsv的编译安装 一、参考 Ubuntu20.04 ffmpeg添加 Intel核显QSV加速支持 视频和视频帧&#xff1a;Intel GPU&…

SpringCloud保姆级搭建教程四---Gateway

1、gateway干嘛用的呢&#xff1f; 答&#xff0c;系统保安&#xff0c;所有想访问系统的请求都要通过gateway2、来吧&#xff0c;开始吧。第一步&#xff0c;创建个模块&#xff0c;就叫gateway。创建模块的步骤&#xff0c;前面都贴过图哦3、添加依赖&#xff0c;在gateway模…

SSRF漏洞 | iwebsec

文章目录SSRF漏洞介绍00-SSRF漏洞验证01-SSRF漏洞文件读取02-SSRF漏洞内网探测03-SSRF漏洞内网应用攻击源码分析SSRF漏洞介绍 这篇文章写地很好。 SSRF&#xff08;Sever-Side-Request-Forgery&#xff0c;服务端请求伪造&#xff09;是一种由攻击者构造请求&#xff0c;由服…

【逐步剖C】-第六章-结构体初阶

一、结构体的声明 1. 结构体的基本概念 结构体是一些值的集合&#xff0c;这些值称为成员变量。结构体的每个成员可以是不同类型的变量。结构体使得C语言有能力描述复杂类型。 如学生&#xff0c;有姓名、学号、性别等&#xff1b;如书&#xff0c;有作者&#xff0c;出版日期…

LeetCode-(94,144,145).二叉树的前中后续遍历

目录二叉树的前序遍历二叉树的中序遍历二叉树的后序遍历二叉树的前序遍历 递归 class Solution {public List<Integer> preorderTraversal(TreeNode root) {List<Integer> list new ArrayList<>();dfs(root,list);return list;}public static void dfs(T…

C# JSON的使用实例和jsonNet程序包的安装

建一个txt文档&#xff0c;存放json内容[{"id":2,"name":"净化","damage":0},{"id":4,"name":"隐身","damage":10000},{"id":6,"name":"疾跑","damage&q…

出现failed to load steamui.dll如何解决?好的修复方法推荐

当你电脑突然出现failed to load steamui.dll的时候&#xff0c;你是否一脸懵逼&#xff1f;根本不知道发生啥时候&#xff0c;突然就会这样报错&#xff0c;其实造成这个原因&#xff0c;主要是因为问题出在steam上&#xff0c;我们还是有很多种方法可以解决的&#xff0c;今天…

OpenCV基础知识与基本操作

1 基本语法操作 1 读取图像 读取图像的如法如下 img cv2.imread(图像地址[,flags])cv2暂不支持读取中文路径&#xff0c;所以务必确认地址中不含中文。 flags为选填项&#xff0c;可以设置读取图片时的处理方式: cv2.IMREAD_UNCHANGED&#xff1a;-1&#xff0c;读入图像并…

一天一道力扣题

300. 最长递增子序列给你一个整数数组 nums &#xff0c;找到其中最长严格递增子序列的长度。子序列 是由数组派生而来的序列&#xff0c;删除&#xff08;或不删除&#xff09;数组中的元素而不改变其余元素的顺序。例如&#xff0c;[3,6,2,7] 是数组 [0,3,1,6,2,2,7] 的子序列…

es-04搜索和查询

文章目录搜索和查询查询的上下文查询语法1.Searchtimeout&#xff1a;2.ES常用查询&#xff1a;(1)Query_string&#xff1a;(2)Query DSL&#xff1a;(3)Full-text queries&#xff1a;全文检索(5)Query and filter&#xff1a;查询和过滤Deep paging图解Scroll search&#x…

Centos7基于docker搭建gitlab mysql tomcat

STEP1 搭建gitlab$ sudo yum install docker-ce $ sudo systemctl start docker搜索Gitlab镜像 并拉取$ docker search gitlab $ docker pull beginor/gitlab-ce:11.0.1-ce.0 //选择自己要安装的版本在服务器本地创建需要映射的文件 etc&#xff08;配置&#xff09; data&…

网关服务限流熔断降级分布式事务

目录一、网关服务限流熔断降级二、Seata--分布式事务1、分布式事务基础①事务②本地事物③分布式事务④分布式事务的场景2、分布式事务解决方案①全局事务②最大努力通知③TCC事务3、Seata介绍4、Seata实现分布式事务控制①案例基本代码&#xff08;异常模拟&#xff09;②启动…

机器学习调参

机器学习调参常用调参方法举例K邻近算法&#xff08;最常规版本&#xff09;加入交叉验证加上网格搜索GridSearchCV函数介绍GridSearchCVcross_val_score常用调参方法举例 sklearn使得我们在很多编写代码的时候更多的工作倾向于调参数而不是去写算法本身&#xff0c;本篇文章整…

HTML表单(属性/元素/输入类型/输入属性):看这一篇就够了

HTML表单 HTML 表单用于搜集不同类型的用户输入。 <form> 元素 HTML 表单用于收集用户输入。 <form> 元素定义 HTML 表单&#xff1a; 实例 <form>form elements</form> HTML 表单包含表单元素。 表单元素指的是不同类型的 input 元素、复选框、单…

maven 命令指定配置文件打包springboot项目

再开发过程中&#xff0c;通常用工具集成了maven&#xff0c;很少直接用maven命令操作打包&#xff0c;记不住&#xff0c;麻烦有时候工具也出现问题&#xff0c;只能用命令行下面很有必要记录一下这个过程我这里用idea编辑器&#xff0c;项目原因 打包本地配置环境可以&#x…

Oracle MAA 参考架构

文章目录总览青铜青铜 MAA 参考架构青铜特性青铜停机时间总结白银白银 MAA 参考架构白银特性白银停机时间总结黄金黄金 MAA 参考架构远程备库多备库备库读取器农场跨区域远程同步备库黄金特性黄金停机时间总结白金白金 MAA 参考架构白金特性白金停机时间总结参考文档总览 图1 …

Springboot+vue+hadoop+java图书个性化推荐系统

前台首页功能模块 3.1首页 图书个性化推荐系统&#xff0c;在前台首页可以查看首页、图书信息、好书推荐、留言反馈、个人中心、后台管理等内容&#xff0c;如图 3.2图书信息 在图书信息页面通过查看图书编号、图书名称、图书类别、图片、作者、出版社、版次、数量、点击次数等…