Linux进程地址空间

news2024/11/15 23:41:30

 哪有明知明天会死今天就会上吊的傻瓜?

                                                                 -要乐观喔

本次博客的分享呢可能比较抽象,博主尽力画图分析,力图给老铁阐明清楚。

目录

⚽一、进程地址空间区域划分

👓Ⅰ区域划分

👓Ⅱ虚拟地址和物理地址

⚽二、页表和映射

⚽三、借由父子进程再来理解虚拟地址和物理地址

⚽四、磁盘中的可执行程序

⚽五、再次理解父子进程

⚽一、进程地址空间区域划分

👓Ⅰ区域划分

本次博客我们以32位操作系统来作为范本说明,64位与之类似。我们知道地址空间描述的基本空间大小是以字节为单位,在32位操作系统下,我们有2^32个字节, 也就是4GB的空间范围(理想状态,实际用户用不了4GB).而32位下有2^32个地址,每个地址标识一个字节大小,这样我们4GB的空间每个位置都可以表示出来。

那么我们是怎么把4GB的空间进行区域划分来供使用呢?要知道地址空间有栈区、堆区、代码段,静态区等。操作系统是怎么划分各个区的空间呢?

其实这里所谓的区域划分很简单,就是每个区域设定一个start,一个end,这之间就是允许它使用的区域。

 它类似于我们学生时代喜欢在课桌上划分三八线,就是非常简单的区域划分。

👓Ⅱ虚拟地址和物理地址

区域划分非常简单,然后这里有个问题,它划分的进程地址空间是虚拟地址还是物理地址呢?物理地址就是实实在在在内存上的地址,一个萝卜一个坑。

我们可以用一段代码来判断。

 我们在这段代码里看到,父子进程里global_val有相同的地址,但是它们指向的值并不相同,所以它不是在内存上的物理地址,而应该是虚拟地址

 所以说到这里,我们讲了区域划分以及进程地址空间的地址是虚拟地址。这里需要注意:

🖊除了栈区和堆区,其他区域的大小是确定的,栈区和堆区的区域划分是不确定的,会不断调整,比如我们压栈,或者动态开辟内存导致堆生长都会导致栈区和堆区结束地址的改变。

🖊比如我们malloc或者new空间,堆区向上生长,扩大堆区,当我们free或delete空间,堆区释放,缩小堆区。比如我们递归压栈,栈区向下生长,栈区扩大,当函数调用完毕,栈区缩小。

⚽二、页表和映射

我们知道进程地址空间是虚拟地址并不是真正的内存上的物理地址,我们写代码必须要加载到内存上才能调用或者写入磁盘,那么我们怎么把虚拟地址和物理地址联系起来呢?这里就要说到操作系统的页表。所谓的页表,它的本质非常复杂,博主不过多介绍它,我们只介绍它对于虚拟地址和物理地址建立联系起到什么作用

 当然,真正的页表远比我画的图要复杂,页表是的本质是哈希表。它的左列为虚拟地址,要写的,右列为物理地址,每个虚拟地址都对应于一个物理地址。这就是映射,但是它并不是一一映射的关系,后面我们举例来说明映射是多个虚拟地址可能对应一个物理地址

 我们介绍过页表之后,就可以完整来看一下我们写代码的存储程序。比如我们在程序里写入

char c=100;&c就是它的地址,我们假设0x1234 5678.这是它在进程地址空间上的虚拟地址,然后我们通过页表,对应的在内存上给它开辟一块空间,有个物理地址0x1111 2222,这时进行写入到内存,这样它就有了物理地址,写入了内存。如果我们想写入磁盘,也是通过页表,一般内存操作系统和外设(比如磁盘)IO(读取和写入)的时候基本单位一般4KB,而页表的大小一般也是4KB

⚽三、借由父子进程再来理解虚拟地址和物理地址

之前我们的代码,出现了相同虚拟地址指向不同的内容的情况,我们在了解学习虚拟地址和物理地址,页表之后,可以解释为什么会出现这样的情况。

博主先把父子进程的进程地址画出来方便分析。

 我们知道父进程fork创建的子进程,所谓的创建就是把父进程的PCB拷贝给子进程,把父进程的虚拟地址空间也拷贝给子进程,所以会出现虚拟地址相同。刚开始的时候,父子进程中变量global_val的虚拟地址是相同的,通过指向的物理地址也是相同的,所以会出现相同的88,而在5s之后子进程尝试写入100时,发生了变化

此时因为子进程把父子进程共享的数据global_val进行了修改因为进程具有独立性,一个进程对共享的数据做修改,如果影响了其他进程,就不能称之为独立性。所以父子进程任何一方尝试对共享数据进行修改,操作系统会在物理内存重新开辟一块物理空间,修改映射关系,不再指向之前的物理内存,这里就出现了我们说的相同的虚拟地址指向不同的物理地址的映射关系指向新的物理内存并将88修改为100.

操作系统将这种行为称为写时拷贝

任何一方尝试写入,os操作系统先进行数据拷贝,更改页表映射,然后再让进程进行修改。

🎈进程地址空间的意义

可能有的老铁有疑惑,地址空间存在的意义是什么呢?我们直接将程序写入内存物理地址不就行了?

🖊我们要想到如果让进程直接访问物理内存,万一进程越界非法操作呢?可能使内存崩溃,非常危险。当然虚拟地址也有可能越界,不过要安全很多,这里页表也会进行保护,截止非法访问。

🖊而且我们如果直接访问物理内存,空指针、内存泄漏等行为可能直接把系统搞坏,而虚拟地址保护了我们的物理内存。

🖊地址空间的存在,可以更方便的进行进程和进程的数据代码的解耦,保证了进程独立性这样的特征。

⚽四、磁盘中的可执行程序

磁盘中的可执行程序在磁盘上是否有地址呢?是有的,因为在预处理时我们就知道在没有被加载到内存的时候,在汇编时就已经有了地址,汇编代码是有地址的。这里在磁盘内我们称为逻辑地址。所以可执行程序内部还是以进程地址空间那一套虚拟地址进行编译的

 

其实可执行程序内部始终保持虚拟地址是一件非常有意义的一件事情,当它从磁盘读取到物理内存中时,它同时具备两套地址,一套地址标识物理内存中代码和数据的地址,也就是在物理内存按照内存的编址方式再给一套地址。还有一套是程序内部互相跳转的虚拟地址。然后我们通过页表进行映射时没必要再编址虚拟地址,能直接调用使用。

 🏆cpu读取

我们的cpu在读取时,它获取到的是物理地址还是虚拟地址呢?cpu读取的天然是虚拟地址,虽然当cpu从进程中读取到虚拟地址,通过页表映射得到物理地址,但是物理地址main函数内部还是虚拟地址,所以cpu读取的就是虚拟地址!!

🏆逻辑地址

磁盘内部是按照虚拟地址编址的,官方来说是逻辑地址。逻辑地址在磁盘内部有两套实现方案。

一种就是按照32位进程地址空间一样编址的。还有一种方式就是给每个区,比如代码区、数据区、在这个区内部第一个位置就是0,然后相对于这个区内部第一个位置有个偏移量。然后读取到内存时还要进行修改,起始位置加上偏移量。不过这种方式比较繁琐,是比较老版本的实现方式。

所以这里让进程以统一的视角来看待进程对应的代码和数据等各个区域,方便使用编译器也以统一视角来进行编译代码

⚽五、再次理解父子进程

我们这里主要来说一下fork这个函数在内核空间是怎么在操作的。

为什么return会有两个返回值呢?当fork函数创建子进程,将子进程内部也拷贝一份和父进程完全相同的内容之后,它里面也会执行fork函数,然后父子进程的fork都会有return返回而返回的本质就是写入,所以会有写时拷贝,父子进程fork返回值指向不同的物理空间

那么不知道有没有老铁有和博主一样的疑惑呢?那就是子进程里面的fork函数不会再执行fork函数创建一个子进程导致无限递归创建子进程吗fork函数不会,他会子进程同步到父进程执行到的那一步,不会再创建,这里其实有一个函数vfork它会子进程再重新执行一次,不和父进程同步,那么就会出现无限递归创建导致操作系统挂掉!!

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.coloradmin.cn/o/30705.html

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈,一经查实,立即删除!

相关文章

科技云报道:发布分布式云战略,中国电子云吹响冲锋号角

科技云报道原创。 过去三年,中国电子云一直牢牢抓住业界的目光,不仅因为“国家队”的身份光环,更因实打实的成绩令人侧目。 据悉,中国电子云核心产品中心云CECSTACK,起步可达3000节点规模,最大可支撑每秒…

一文搞懂堆外内存(模拟内存泄漏)

一、前言 平时编程时,在 Java 中创建对象,实际上是在堆上划分了一块区域,这个区域叫堆内内存。 使用这 -Xms -Xmx 来指定新生代和老年代空间大小的初始值和最大值,这初始值和最大值也被称为 Java 堆的大小,即 堆内内…

2022亚太C题赛题分享

是否全球变暖? 加拿大的49.6C创造了地球北纬50以上地区的气温新纪录,一周内数百人死于高温;美国加利福尼亚州死亡谷是54.4C,这是有史以来地球上记录的最高温度;科威特53.5C,甚至在阳光下超过70多个C&#x…

模板进阶模板分离编译的问题与解决

🧸🧸🧸各位大佬大家好,我是猪皮兄弟🧸🧸🧸 文章目录一、模板参数1.非类型模板参数比如库中的array2.类型模板参数二、模板参数的特化1.全特化2.偏特化(半特化)三、模板的…

RTSP 和 RTMP原理 通过ffmpeg实现将本地摄像头推流到RTSP服务器

RTSP 和 RTMP原理 & 通过ffmpeg实现将本地摄像头推流到RTSP服务器 文章目录RTSP 和 RTMP原理 & 通过ffmpeg实现将本地摄像头推流到RTSP服务器一、流媒体:RTSP 和 RTMP0、参考资料1、RTSP 和 RTMP的工作原理1)RTSP工作原理2)RTMP工作原…

计算机组成原理期末复习第三章-3(唐朔飞)

计算机组成原理期末复习第三章-3(唐朔飞) ✨欢迎关注🖱点赞🎀收藏⭐留言✒ 🔮本文由京与旧铺原创,csdn首发! 😘系列专栏:java学习 💻首发时间:&am…

C树和森林的研究学习随记【一】

文章目录树与森林树结构初识树基本的相关概念森林二叉树(Binary Tree)满二叉树【饱满】完全二叉树【少了叶子的满二叉树】总结树和森林的转换快速转换技巧森林转化为二叉树分辨二叉树的五大性质树与森林 树是一种的数据结构。顾名思义,类似于我们生活中的树一样。【…

C++11标准模板(STL)- 算法(std::stable_sort)

定义于头文件 <algorithm> 算法库提供大量用途的函数&#xff08;例如查找、排序、计数、操作&#xff09;&#xff0c;它们在元素范围上操作。注意范围定义为 [first, last) &#xff0c;其中 last 指代要查询或修改的最后元素的后一个元素。 将范围内的元素排序&#…

m基于Simulink的高速跳频通信系统抗干扰性能分析

目录 1.算法描述 2.仿真效果预览 3.MATLAB部分代码预览 4.完整MATLAB程序 1.算法描述 信道为Rayleigh衰落信道下的性能分析和Nakagami-m衰落信道下的性能分析。本课题我们采用的仿真参数如下&#xff1a; simulink仿真模型如下所示&#xff1a; 跳频是最常用的扩频方式之一…

Hadoop笔记-01概述

文章目录1 什么是大数据&#xff1f;1.1 大数据计算模式及代表产品1.2 云计算与物联网1.2.1 云计算1.2.1.1 虚拟化1.2.1.2 分布式存储1.2.1.3 分布式计算1.2.1.4 多租户1.3 物联网1.3.1 识别和感知技术1.3.2 网络与通信技术1.3.3 数据挖掘与融合技术1.4 大数据与云计算、物联网…

正态分布,二维正态分布,卡方分布,学生t分布——概率分布学习 python

目录 基本概念 概率密度函数(PDF: Probability Density Function) 累积分布函数(CDF: Cumulative Distribution Function) 核密度估计&#xff08;(kernel density estimation&#xff09; 1.正态分布 概率密度函数&#xff08;pdf&#xff09; 正态分布累积分布函数(CD…

山东大学软件学院操作系统课程设计(2021秋季,nachos)实验6

一、实验内容 二、源码分析 1. 理解nachos单线程地址映射机制 Machine::Run()中调用Machine::OneInstruction(Instruction *instr)逐条执行可执行文件中的指令&#xff0c;执行指令过程中和获取下一条指令时如果访问内存&#xff0c;通过machine->ReadMem(…)/WriteMem(……

嵌入式开发学习之--用蜂鸣器来传递摩斯码

本篇文章致力于从开发的角度思考问题&#xff0c;而不是搞学术的东西。 文章目录前言一、项目概况1.1、项目需求1.2、项目来源1.3、项目开发环境1.4、项目意义二、开发步骤2.1、了解什么是摩斯码2.2、构建项目流程图2.3、找到合适的模板2.4、增加文件2.5、添加代码2.6、读入数据…

学生HTML个人网页作业作品 (水果商城HTML+CSS)

&#x1f380; 精彩专栏推荐&#x1f447;&#x1f3fb;&#x1f447;&#x1f3fb;&#x1f447;&#x1f3fb; ✍️ 作者简介: 一个热爱把逻辑思维转变为代码的技术博主 &#x1f482; 作者主页: 【主页——&#x1f680;获取更多优质源码】 &#x1f393; web前端期末大作业…

通过写循环判断对称数:将一个整型数逆置,我们判断逆置后的整型数如果和最初的数相等,那么它就是对称数,如果不相等,就不是对称数

将一个整型数逆置&#xff0c;我们判断逆置后的整型数如果和 最初的数相等&#xff0c;那么它就是对称数&#xff0c;如果不相等&#xff0c;就不是对称数#include <stdio.h>int main() {int i,j0;scanf("%d",&i);int ki;//备份写在scanf之后while(i){jj*1…

Dubbo入门实战(SpringBoot + Nacos)

本文主要介绍 Dubbo 3.0 整合 SpringBoot 的样例&#xff0c;这里使用 Nacos 作为注册中心&#xff0c;读者也可以使用 Zookeeper&#xff0c;项目结构为&#xff1a; interface-service&#xff1a;接口服务user-service-provider&#xff1a;服务提供者order-service-consume…

浅谈中小企业的供应商管理

一、供应商管理的概念 供应商管理&#xff0c;是在新的物流与采购经济形势下&#xff0c;提出的管理机制。现代管理学如MBA、EMBA等将其分为竞争式及双赢式两种模式。供应商管理是供应链采购管理中一个很重要的环节&#xff0c;它在实现准时化采购中有很重要的作用。供应商管理…

Linux | 进程间通信 | 匿名管道 | 命名管道 | 模拟代码实现进程通信 | 控制多子进程时的资源回收问题

文章目录进程通信的意义匿名管道通信原理管道的访问控制进程控制管道的特点命名管道进程通信的意义 之前聊进程时&#xff0c;讲过一个性质&#xff0c;即进程具有独立性&#xff0c;两个进程之间的交互频率是比较少的。就连父子进程也只是共享代码&#xff0c;修改父子进程中…

Bezier曲线与B-Spline曲线

贝塞尔曲线 一阶贝塞尔曲线P01P_0^1P01​由两个控制点P0P_0P0​和P1P_1P1​完全定义&#xff0c;相当于线性插值。随着ttt从0到1变化&#xff0c;贝塞尔点从P0P_0P0​移动到P1P_1P1​. P01(1−t)P0tP1,t∈[0,1]P_{0}^{1}\left( 1-t\right) P_{0}tP_{1}\quad,t\in[0,1] P01​(1−…

服务器是什么

服务器是什么 服务器是什么&#xff1a;服务器英文名称为“Server”&#xff0c;指的是网络环境下为客户机(Client)提供某种服务的专用计算机&#xff0c;服务器安装有网络操作系统(如Windows Server、Linux、Unix等)和各种服务器应用系统软件(如Web服务、电子邮件服务)&#…