【C++】哈希算法

news2024/11/29 4:38:11

目录

 

1.哈希映射

1.1哈希的概念

 1.2哈希冲突

1.3哈希函数 

 1.31直接定值法

1.32除留余数法 

 2.解决哈希冲突

2.1闭散列法

2.11线性探测

2.12二次探测 

3代码实现 

3.1状态:

3.2创建哈希节点类

3.21哈希表扩容:

3.3数据插入

3.4查找与删除

 3.5仿函数 

完整cpp表

4.开散列哈希桶

4.1概念

4.2仿函数 

4.3哈希桶结点构建 

4.4哈希桶的查找和删除

4.5哈希桶的插入 


1.哈希映射

1.1哈希的概念

  • 在顺序结构以及平衡树中,元素关键码与其存储位置之间没有对应的关系,因此在查找一个元素时,必须要经过关键码的多次比较。顺序查找时间复杂度为O(N),平衡树中为树的高度,即O(logN),搜索的效率决于搜索过程中元素的比较次数。
  • 理想的搜索方法:可以不经过任何比较,一次直接从表中得到要搜索的元素。 如果构造一种存储结构,通过某种函数(hashFunc)使元素的存储位置与它的关键码之间能够建立一一映射的关系,那么在查找时通过该函数可以很快找到该元素。

当向该结构中:

  1. 插入元素:根据待插入元素的关键码,以此函数计算出该元素的存储位置并按此位置进行存放
  2. 搜索元素:对元素的关键码进行同样的计算,把求得的函数值当做元素的存储位置,在结构中按此位置取元素比较,若关键码相等,则搜索成功

该方式即为哈希(散列)方法,哈希方法中使用的转换函数称为哈希(散列)函数,构造出来的结构称为哈希表(Hash Table)(或者称散列表)。
unordered_map和unordered_set的底层就是哈希来实现的,它是无序的。

  • Hash(key)=key%capacity。

聪明的小伙伴已经找到矛盾了,如果说再添加一个数据5,那他存那? 

 1.2哈希冲突

对于两个数据元素的关键字 k_{i} 和 k_j{} (i != j),有 k_{i} != k_j{} ,但有:Hash(k_{i}) == Hash(k_j{}),即:不同关键字通过相同哈希函数计算出相同的哈希地址,该种现象称为哈希冲突或哈希碰撞把具有不同关键码而具有相同哈希地址的数据元素称为“同义词”

所以这种方式建立起来的映射就十分的不合理,所以我们要改进。

哈希设计的原则:

  1. 哈希函数的定义域必须包括需要存储的全部关键码,而如果散列表允许有m个地址时,其值域必须在0到m-1之间。
  2. 哈希函数计算出来的地址能均匀分布在整个空间中。
  3. 哈希函数应比较简单。

1.3哈希函数 

 1.31直接定值法

取关键字的某个线性函数为散列地址:Hash(key)= A*key + B

 优点:简单,速度快,节省空间,查找key O(1)的时间复杂度

 缺点:当数据范围大时会浪费空间,不能处理浮点数,字符串数据

 使用场景:适用于整数,数据范围比较集中

 例如计数排序,统计字符串中出现的用26个英文字符统计,给数组分配26个空间,遍历到的字符是谁,就把相应的元素值++

1.32除留余数法 

把数据映射到有限的空间里面。设散列表中允许的地址数为m,取一个不大于m,但最接近或者等于m的质数p作为除数,按照哈希函数:Hash(key) = key% p(p<=m),将key转换成哈希地址。

哈希函数设计的越精妙,产生哈希冲突的可能性就越低,但是无法避免哈希冲突。

看1.1节的例子

 解决哈希冲突最常用的方法是闭散列和开散列

 2.解决哈希冲突

2.1闭散列法

闭散列:也叫开放定址法,当发生哈希冲突时,如果哈希表未被装满,说明在哈希表中必然还有空位置,那么可以把key存放到冲突位置中的“下一个” 空位置中去。 

但是咋去找下一个空位置才是最关键的?

2.11线性探测

线性探测:从发生冲突的位置开始,依次向后探测,直到寻找到下一个空位置为止。

  • 插入:通过哈希函数获取待插入元素在哈希表中的位置。如果该位置中没有元素则直接插入新元素,如果该位置中有元素发生哈希冲突,使用线性探测找到下一个空位置,插入新元素。
  • 删除:采用闭散列处理哈希冲突时,不能随便物理删除哈希表中已有的元素,否则会影响其他元素的搜索。比如删除元素1,如果直接删除掉,11查找起来可能会受影响。因此线性探测采用标记的伪删除法来删除一个元素。

给每个位置一个标记,用空、存在、删除3种状态来区分。

  1. 负载因子 = 存储的有效数据个数/空间的大小 。
  2. 负载因子越大,冲突的概率越高,增删查改效率越低。
  3. 负载因子越小,冲突的概率越低,增删查改的效率越高,但是空间利用率低,浪费多。 
  4. 负载因子 <1,就能保证发生哈希冲突时一定能找到空位置。

线性探测的优缺点:

  • 线性探测优点:实现非常简单。
  • 线性探测缺点:一旦发生哈希冲突,所有的冲突连在一起,容易产生数据“堆积”,即:不同关键码占据了可利用的空位置,使得寻找某关键码的位置需要许多次比较,导致搜索效率降低。

2.12二次探测 

二次探测改进了一些线性探测,但是也就那样,这里我就不给太多画面了。

所谓的二次探测我们可以理解为飞跃式,线性是一个一个找空位置,二次就是跳着找。

方法hash(key) + i^2

hash(11)=11%10+0*2=1,但是1的位置被占了,所以变成hash(11)+1*2,如果这个位置是空的就放进去,不是的话,i继续加。

3代码实现 

3.1状态:

状态:这里需要三种状态:空,已占用,已删除

如果只用有/没有来代表状态,那删除一个数据后,这个位置就是空的,那就不会再遍历了,但是它后面还有数据的话就存在问题了,所以我们用已删除这个状态来表示的话,还可以遍历后面的数据。

#pragma once
#include<vector>
#include<iostream>
using namespace std;

namespace CloseHash
{
	enum State
	{
		EMPTY,   //0 空
		EXIST,   //1  存在
		DELETE,   // 2 已删除
	};
}

3.2创建哈希节点类

template<class K,class V>
	struct HashData
	{
		pair<K, V> _kv;//数据
		State _state = State::EMPTY;//状态  --空
	};
	template<class K, class V>//添加仿函数便于把其他类型的数据转换为整型数据
	class HashTable
	{

	public:
		//相关功能的实现……

	private:
		vector<HashData<K, V>> _table;//哈希表
		size_t _n = 0;//存储哈希表中有效数据的个数
	};

  • 查找:当数据是1时,直接映射到下标1处,此时该位置的状态是EXIST,数据是11时,映射到下标1处,但是已经有1了所以++往后找空位置找到后状态更新为EXIST。
  • 删除:删除1,找11,当删除1后,状态更新为DELETE,查找11时下标发现状态是DELETE时会继续往后移动,然后找到11.

3.21哈希表扩容:

当插入的数据较多,而哈希表较短时,就要考虑到扩容,但是哈希的扩容不简单,因为一扩容,下标就变了,那很多数据的映射后的位置就变了。

现在的11在下标11处,就不在2处了。 

所以我们在上面提到了负载因子: 填入表中的元素个数 / 散列表的长度

由于散列表的长度一定,所以负载因子和表中的元素个数成正比。元素个数越多,哈希冲突越大,所以我们一般将负载因子定在0.7~0.8,在代码中我们就定在0.7。

插入时我们再介绍。

3.3数据插入

插入的详细步骤:

  • 去除重复:
  1. 插入的值可能 已经存在,所以用用Find先进行查找
  2. 找到就返回false,没找到在插入。
  • 空间扩容:
  1. 如果表是空的就给10个空间,否则扩大2倍。
  2. 建立一个新哈希表,把旧表的值插入到新表
  • 探测找位
  1. 如果位置的状态是EXIST,继续往后移
  2. 找到空位置后,插入,状态变为存在,_n++。
//查找
	bool Insert(const pair<K, V>& kv)
	{
		
		size_t hashi = kv.first % _tables.size();    //1.遇到空就停止了
		//线性探测
		while (_tables[hashi]._state == EXIST)
		{
			hashi++;
			hashi %= _tables.size();    //2. 可能出表
		}
		_tables[hashi]._kv = kv;
		_tables[hashi]._state = EXIST;
		++_n;
		return true;
	}

在1.0版本中我注意两个细节:

  • hashi为啥要模size而不是capacity?

计算机开辟了20个空间,只存储10个数据,但是只能让计算机在前十个空间存,要不一旦用空的空间,遍历时遇到后就不在往后进行了。所以开的空间一般和数据个数一致。

  • while循环中为啥要加一步hashi%=_table.size()?

比如我们开了20个空间,下标16以后都存满了但是前面还有位置,但是我们存一个37,那他就一直找位置,直到找到19,然后就出这个哈希表了,所以要让他返回到表上再到下标靠前的位置去找。

接下来就要开辟空间了。但是这个可不简单。

当插入的数据较多,而哈希表较短时,就要考虑到扩容,但是哈希的扩容不简单,因为一扩容,下标就变了,那很多数据的映射后的位置就变了。

现在的11在下标11处,就不在2处了。 

所以我们在上面提到了负载因子: 填入表中的元素个数 / 散列表的长度

由于散列表的长度一定,所以负载因子和表中的元素个数成正比。元素个数越多,哈希冲突越大,所以我们一般将负载因子定在0.7~0.8,在代码中我们就定在0.7。

在这里我们就要重新建一个哈希表。

//查找
	bool Insert(const pair<K, V>& kv)
	{
		if (Find(kv.first))     //插入的值已经存在
		{
			return false;
		}
		//扩容
		if (_tables.size() == 0 || 10 * _n / _tables.size() >= 7)  //负载因子
		{
			size_t newSize = _tables.size() == 0 ? 10 : _tables.size() * 2;   //扩容
			HashTable<K, V> newHT;
			newHT._tables.resize(newSize);  //扩容后用一个新表
			//遍历旧表,把旧表每个存在的元素插入newHT
			for (auto& e : _tables)
			{
				if (e._state == EXIST)
				{
					newHT.Insert(e._kv);
				}
			}
			newHT._tables.swap(_tables);//建立映射关系后交换

		}
		size_t hashi = kv.first % _tables.size();    //1.遇到空就停止了
		//线性探测
		while (_tables[hashi]._state == EXIST)
		{
			hashi++;
			hashi %= _tables.size();    //2. 可能出表
		}
		_tables[hashi]._kv = kv;
		_tables[hashi]._state = EXIST;
		++_n;
		return true;
	}

如果哈希表中已经有插入的值时,我们就要去除冗杂,用find函数。

3.4查找与删除

查找的大致思路和插入的很接近,这里就不在重复了。

//查找
	HashData<K, V>* Find(const K& key)
	{
		if (_tables.size() == 0)
		{
			return nullptr;
		}
		size_t hashi = key % _tables.size();
		while (_tables[hashi]._state != EMPTY)
		{
			if (_tables[hashi]._kv.first == key)
			{
				return &_tables[hashi];   //返回的是地址
			}
			hashi++;
			hashi %= _tables.size();
		}
		return nullptr;
	}
	//删除
	bool Erase(const K& key)
	{
		HashData<K, V>* ret=Find(key);
		if (ret)
		{
			ret->_state = DELETE;
			--_n;
		}
		else
		{
			return false;
		}
	}

删除时,我们直接把要删除的数据状态改成DELETE就行了,甚至内部的数据都不用删除。

 3.5仿函数 

这里的取模用的都是整数,那如果数据是浮点型?更甚至是字符串怎么搞?所依我们就要用到仿函数来进行类型转换。

//利用仿函数将数据类型转换为整型
template<class K>
struct HashFunc
{
	size_t operator()(const K& key)
	{
		return (size_t)key;
	}
};
//模板的特化
template<>
struct HashFunc<string>  //如果是字符串,直接调用特化模板
{
	size_t operator()(const string& key)
	{
		
		size_t hash = 0;
		for (auto ch : key)
		{
			hash = hash * 131 + ch;//把所有字符的ascii码值累计加起来
		}
		return hash;
	}
};

完整cpp表

#pragma once
#include<vector>
#include<iostream>
using namespace std;

enum State
{
	EMPTY,   //0 空
	EXIST,   //1  存在
	DELETE,   // 2 已删除
};

template<class K, class V>
struct HashData
{
	pair<K, V> _kv;//数据
	State _state = State::EMPTY;//状态  --空
};
//利用仿函数将数据类型转换为整型
template<class K>
struct HashFunc
{
	size_t operator()(const K& key)
	{
		return (size_t)key;
	}
};
//模板的特化
template<>
struct HashFunc<string>
{
	size_t operator()(const string& key)  //字符串直接使用
	{
		size_t hash = 0;
		for (auto ch : key)
		{
			hash = hash * 131 + ch;//把所有字符的ascii码值累计加起来
		}
		return hash;
	}
};
template<class K, class V,class Hash = HashFunc<K>>
class HashTable
{

public:
	//插入
	bool Insert(const pair<K, V>& kv)
	{
		if (Find(kv.first))     //插入的值已经存在
		{
			return false;
		}
		//扩容
		if (_tables.size() == 0 || 10 * _n / _tables.size() >= 7)  //负载因子
		{
			size_t newSize = _tables.size() == 0 ? 10 : _tables.size() * 2;   //扩容
			HashTable<K, V> newHT;
			newHT._tables.resize(newSize);  //扩容后用一个新表
			//遍历旧表,把旧表每个存在的元素插入newHT
			for (auto& e : _tables)
			{
				if (e._state == EXIST)
				{
					newHT.Insert(e._kv);
				}
			}
			newHT._tables.swap(_tables);//建立映射关系后交换

		}
		Hash hf;
		size_t start = hf(kv.first);//取出键值对的key,并且避免了负数的情况,借用仿函数确保是整型数据
		start %= _tables.size();
		size_t hashi = start;
		size_t i = 1;
		//1.遇到空就停止了
		//线性探测
		while (_tables[hashi]._state == EXIST)
		{
			hashi++;
			hashi %= _tables.size();    //2. 可能出表
		}
		_tables[hashi]._kv = kv;
		_tables[hashi]._state = EXIST;
		++_n;
		return true;
	}
	//查找
	HashData<K, V>* Find(const K& key)
	{
		if (_tables.size() == 0)
		{
			return nullptr;
		}
		Hash hf;
		size_t start = hf(key);//通过仿函数把其它类型数据转为整型数据
		start %= _tables.size();
		size_t hashi = start;
		size_t i = 1;
		while (_tables[hashi]._state != EMPTY)
		{
			if (_tables[hashi]._kv.first == key)
			{
				return &_tables[hashi];   //返回的是地址
			}
			hashi++;
			hashi %= _tables.size();
		}
		return nullptr;
	}
	//删除
	bool Erase(const K& key)
	{
		HashData<K, V>* ret=Find(key);
		if (ret)
		{
			ret->_state = DELETE;
			--_n;
		}
		else
		{
			return false;
		}
	}
private:
	vector<HashData<K, V>> _tables;//哈希表
	size_t _n = 0;//存储哈希表中有效数据的个数
};


void testHash1()
{
	int a[] = { 1,11,4,15,26,7 };
	HashTable<int, int> ht;
	for (auto e : a)
	{
		ht.Insert(make_pair(e, e));
	}
}

4.开散列哈希桶

4.1概念

开散列也叫拉链法先对所有key用散列函数计算散列地址,把有相同地址的key每个key都作为一个桶,通过单链表链接在哈希表中

此时的表里面存储一个链表指针,就是把冲突的数据通过链表的形式挂起来。

它的算法公式:hash(key)=key%capacity

 这里的插入可以是头插也可以是尾插,插入时是无序的。

 也就是说哈希桶的根本是一个指针数组,哈希桶的每一个位置存的都是一个链表指针。

这个指针数组里的每一个元素都是结点指针,并且头插的效率比较高。

4.2仿函数 

这次我们先弄模板来将其他类型转换为size_t。

namespace OpenHash
{
	template<class K>
	struct Hash
	{
		size_t operator()(const K& key)
		{
			return key;
		}
	};
	// 特化
	template<>
	struct Hash < string >
	{
		size_t operator()(const string& s)
		{
			// BKDR Hash
			size_t value = 0;
			for (auto ch : s)
			{
				value += ch;
				value *= 131;
			}

			return value;
		}
	};
}

4.3哈希桶结点构建 

因为是指针数组,所以结点中的成员变量多了一个指向下一个桶的指针。

//结点类
	template<class K, class V>
	struct HashNode
	{
		pair<K, V> _kv;
		HashNode<K, V>* _next;
		//构造函数
		HashNode(const pair<K, V>& kv)
			:_kv(kv)
			, _next(nullptr)
		{}
	};
	//哈希表的类
	template<class K, class V, class Hash = HashFunc<K>>
	class HashTable
	{
		typedef HashNode<K, V> Node;
	public:
		//相关功能的实现……
	private:
		//指针数组
		vector<Node*> _tables;
		size_t _n = 0;//记录有效数据的个数
	};

4.4哈希桶的查找和删除

这里的查找\删除操作和上面的如出一辙,但是哈希桶的存储是链表的形式,所以会和链表的相关操作很接近。

//查找
		Node* Find(const K& key)
		{
			//防止后续除0错误
			if (_tables.size() == 0)
			{
				return nullptr;
			}
			//构建仿函数
			HashFunc hf;
			//找到对应的映射下标位置
			size_t hashi = hf(key);
			hashi %= _tables.size();
			Node* cur = _tables[hashi];
			//在此位置的链表中进行遍历查找
			while (cur)
			{
				if (cur->_kv.first == key)
				{
					//找到了
					return cur;
				}
				cur = cur->_next;
			}
			//遍历结束,没有找到,返回nullptr
			return nullptr;
		}
		//删除
		bool Erase(const K& key)
		{
			if (_tables.size() == 0)
			{
				return nullptr;
			}
			size_t hashi = key % _tables.size();
			Node* cur = _tables[hashi];
			Node* prev = nullptr;
			while (cur)
			{
				if (cur->_kv.first == key)
				{
					//1.头删
					if (prev == nullptr)
					{
						_tables[hashi] = cur->_next;
					}
					else    //中间位置删除
					{
						prev->_next = cur->_next;
					}
					delete cur;
					return true;
				}
				prev = cur;
				cur = cur->_next;
			}
			return false;
		}

4.5哈希桶的插入 

  • 去除重复:
  1. 插入的值可能 已经存在,所以用用Find先进行查找
  2. 找到就返回false,没找到再进行插入。
  • 空间扩容:
  1. 如果负载因子==1就进行扩容。
  2. 建立一个新哈希表,把旧表的值插入到新表。
  3. 再把新表交换到旧表那里。

但是在把旧表映射到新表时要释放掉旧表,vector类型会自动调用析构函数,然而存储的数据是Node*类型的,是内置类型,不会自动释放,结果就是哈希表释放了但是表中存的数据没释放,所以我们要手写一个析构函数。

  • 头插操作
  1. 根仿函数找到合适映射位置
  2. 进行头插操作并更新桶内数据个数。

所以我们首先写一个析构函数:

//析构函数
		~HashTable()
		{
			for (size_t i = 0; i < _tables.size(); i++)
			{
				Node* cur = _tables[i];
				while (cur)
				{
					Node* next = cur->_next;
					delete cur;
					cur = next;
				}
				_tables[i] = nullptr;//释放后置空
			}
		}

整体代码:

//插入
		bool Insert(const pair<K, V>& kv)
		{
			//1、去除重复
			if (Find(kv.first))
			{
				return false;
			}
			//2、负载因子 == 1就扩容
			if (_tables.size() == _n)
			{
				size_t newSize = _tables.size() == 0 ? 10 : _tables.size() * 2;
				vector<Node*> newTable;
				newTable.resize(newSize, nullptr);
				for (size_t i = 0; i < _tables.size(); i++)//遍历旧表
				{
					Node* cur = _tables[i];
					while (cur)
					{
						Node* next = cur->_next;
						size_t hashi = hf(cur->_kv.first) % newSize;//确认映射到新表的位置
						//头插
						cur->_next = newTable[hashi];
						newTable[hashi] = cur;
						cur = next;
					}
					_tables[i] = nullptr;
				}
				newTable.swap(_tables);
			}
			//3、头插
			//构建仿函数,把数据类型转为整型,便于后续建立映射关系
			HashFunc hf;
			size_t hashi = hf(kv.first);
			hashi %= _tables.size();
			//头插到对应的桶即可
			Node* newnode = new Node(kv);
			newnode->_next = _tables[hashi];
			_tables[hashi] = newnode;
			++_n;
			return true;
		}

C++ 进阶: 本仓库存放一些较难C++代码https://gitee.com/j-jun-jie/c---advanced.git

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.coloradmin.cn/o/26569.html

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈,一经查实,立即删除!

相关文章

数据可视化之设计经验分享:轻松三步教你学会制作数据可视化大屏思路

当看到屏幕上一个个炫酷&#xff0c;具有科技感的数据大屏时&#xff0c;很多人都会好奇这是怎么做出来的。自己在制作大屏时明明按着需求做了&#xff0c;可是做出来后总是觉得画面不好看&#xff0c;不够炫&#xff0c;感觉很糟糕。 那要如何才能设计那样的数据可视化大屏呢…

JS 的新一代日期/时间 API Temporal

众所周知&#xff0c;JS的Date是出了名的难用&#xff0c;一直以来我们都在使用momentjs&#xff0c;dayjs等第三方库来处理日期和时间格式&#xff0c;于是 TC39 组织开始了对 Date 的升级改造&#xff0c;他们找到了 moment.js 库的作者&#xff0c;Maggie &#xff0c;由她来…

【深度学习】实验5答案:滴滴出行-交通场景目标检测

DL_class 学堂在线《深度学习》实验课代码报告&#xff08;其中实验1和实验6有配套PPT&#xff09;&#xff0c;授课老师为胡晓林老师。课程链接&#xff1a;https://www.xuetangx.com/training/DP080910033751/619488?channeli.area.manual_search。 持续更新中。 所有代码…

代码随想录刷题| 01背包理论基础 LeetCode 416. 分割等和子集

目录 01背包理论基础 二维dp数组 1、确定dp数组以及下标的含义 2、确定递推公式 3、dp数组如何初始化 4、确定遍历顺序 5、打印dp数组 最终代码 一维dp数组 1、确定dp数组的定义 2、确定递推公式 3、初始化dp数组 4、遍历顺序 5、打印dp数组 最终代码 416. 分割…

一次搞懂SpringBoot核心原理:自动配置、事件驱动、Condition

前言 SpringBoot是Spring的包装&#xff0c;通过自动配置使得SpringBoot可以做到开箱即用&#xff0c;上手成本非常低&#xff0c;但是学习其实现原理的成本大大增加&#xff0c;需要先了解熟悉Spring原理。如果还不清楚Spring原理的&#xff0c;可以先查看博主之前的文章&…

Vue实现简易购物车功能

用Vue写一个列表案例&#xff0c;页面布局什么的dom&#xff0c;不需要自己事先全部排好&#xff0c;而是通过li遍历&#xff0c;把数据遍历出来&#xff1b;先定义好div标签&#xff0c;li根据数组的长度datalist进行遍历&#xff0c;图片的链接要用“&#xff1a;”&#xff…

算法设计与分析 SCAU8597 石子划分问题

8597 石子划分问题 时间限制:1000MS 代码长度限制:10KB 提交次数:0 通过次数:0 题型: 编程题 语言: G;GCC;VC;JAVA Description 给定n个石子&#xff0c;其重量分别为a1,a2,a3,…,an。 要求将其划分为m份&#xff0c;每一份的划分费用定义为这份石子中最大重量与最小重量差…

nRF52832闪存FDS使用(SDK17.1.0)

陈拓 2022/10/29-2022/11/22 1. 简介 对于Nordic芯片内部FLASH存储管理有两种方式&#xff0c;FS (Flash Storage)和FDS (Flash Data Storage) 。FS是FDS的底层实现&#xff0c;FDS是对FS的封装&#xff0c;使用更容易。 Flash Data Storage&#xff08;FDS&#xff09;模块是…

容器与容器编排系统

Docker公司发明的「容器镜像」技术&#xff0c;创造性地解决了应用打包的难题。改变了一大批诸如容器编排、服务网格和云原生等技术&#xff0c;深刻影响了云计算领域的技术方向。 一、Docker 容器技术 概括起来&#xff0c;Docker 容器技术有3个核心概念容器、镜像和镜像仓库…

当3A射击游戏遇上Play to Earn,暴躁兔带你了解MetalCore

MetalCore是一款具有机甲风格的战斗射击类的Play to Earn & Free to Play游戏&#xff0c;暴躁兔对这款游戏之前也有做过分析&#xff0c;MetalCore在近期启动了alpha开放世界测试&#xff0c;之前有NFT的玩家获得key code之后可以在PC端下载后进行体验。alpha阶段在10月20…

如何使IOT2050成为PN设备

Profinet Driver&#xff08;PNDriver&#xff09;从V2.3开始支持IO设备(IOD)功能&#xff0c;支持通用网络接口和Linux操作系统&#xff0c;最小支持2ms的通讯周期。本文介绍如何编译PNDriver并运行在IOT2050上。 1. 编译PNDriver 因为PNDriver只支持32位模式&#xff0c;因…

TiDB ——TiKV

TiDB ——TiKV TiKV持久化 TiKV架构和作用TiKV数据持久化和读取TiKV如何提供MVCC和分布式事务支持TiKV基于Raft算法的分布式一致性TiKV的coprocessor TiKV架构和作用 数据持久化分布式一致性MVCC分步式事务Coprocessor RocksDB 单机持久化引擎&#xff0c;单机key-value的…

L2十档行情API接口的开发原理是什么?

L2十档行情API接口的开发原理不知道大家有没有了解过&#xff0c;其实在现实的股市量化交易中&#xff0c;就有不少的投资者也在思考这个问题&#xff0c;并且也有的部分交易者会选择自己开发来使用&#xff0c;不仅支持A股所有的股票数据&#xff0c;也能对期货、外汇、黄金等…

个人项目-部署手册

前言 一、RDS和ECS购买与配置 https://www.aliyun.com/?spm5176.12818093.top-nav.dlogo.3be916d0u0Ncp9 购买RDS(MYSQL)和ECS(规格族&#xff1a;突发性能实例 t6 )的时候尽量选择一个大区》如&#xff1a;华东&#xff08;杭州&#xff09;配置不需要太高(够自己使用就行了…

干货分享 | B站SLO由失败转成功,B站SRE做对了什么?

最近几年&#xff0c;Google SRE在国内非常流行。 Google SRE方法论中提出了SLO是SRE实践的核心&#xff0c;SLO为服务可靠性设定了一个目标级别&#xff0c;它是量化线上质量的关键因素&#xff0c;它是用来回答一个服务到底“什么时候叫做挂了”的根本依据&#xff0c;也是可…

Python网络爬虫入门篇

1. 预备知识 学习者需要预先掌握Python的数字类型、字符串类型、分支、循环、函数、列表类型、字典类型、文件和第三方库使用等概念和编程方法。 2. Python爬虫基本流程 a. 发送请求 使用http库向目标站点发起请求&#xff0c;即发送一个Request&#xff0c;Request包含&am…

xxl-job 执行成功,但是报“任务结果丢失,标记失败“错误

问题1:使用xxl定时更新数据,发现执行结果是失败的 打开日志查看,发现没报错,结果是200 打开备注,上面写着"结果丢失". 再仔细对比下,发现外面日志列表中的执行时间是00:20:18;而日志记录中的最后时间是00:39:32;也就是说线程还没执行完,就先报结果错误了. 对比日志时…

[附源码]Python计算机毕业设计宠物寄养管理系统

项目运行 环境配置&#xff1a; Pychram社区版 python3.7.7 Mysql5.7 HBuilderXlist pipNavicat11Djangonodejs。 项目技术&#xff1a; django python Vue 等等组成&#xff0c;B/S模式 pychram管理等等。 环境需要 1.运行环境&#xff1a;最好是python3.7.7&#xff0c;…

Jmeter压力测试教程(上)

JMeter压力测试一、 简介1.1优点1.2缺点二、安装2.1下载2.2解决中文乱码问题2.5配置环境变量2.4启动入门案例三、线程组相关3.1 创建多个线程组3.2 并发和顺序执行3.3 两个特殊的线程组&#xff08;setUp/tearDown&#xff09;线程细节设置默认http请求新增接口信息头管理器四、…

SAP ADM100-1.2之系统登录过程(ABAP)

1、SAP登录过程 为了在前端最终用户和SAP系统实例之间创建连接,sapgui.exe程序需要启动参数。参数字符串是由saplogon .exe程序使用为登录选择的SAP GUI的信息创建。 SAP登录信息有以下两个来源:SAP Logon的配置文件,以及对所选系统的消息服务器的直接请求(下图中的步骤1和…