vector的介绍与代码演示

news2025/4/5 17:01:06

由于以后我们写OJ题时会经常使用到vector,所以我们必不可缺的是熟悉它的各个接口。来为我们未来作铺垫。

首先,我们了解一下:

https://cplusplus.com/reference/vector/

vector的概念: 

1. vector是表示可变大小数组的序列容器。

2. 就像数组一样,vector也采用的连续存储空间来存储元素。也就是意味着可以采用下标对vector的元素进行访问,和数组一样高效。但是 又不像数组,它的大小是可以动态改变的,而且它的大小会被容器自动处理

3. 本质讲,vector使用动态分配数组来存储它的元素。当新元素插入时候,这个数组需要被重新分配大小,为了增加存储空间。其做法是,分配一个新的数组,然后将全部元素移到这个数组。就时间而言,这是一个相对代价高的任务,因为每当一个新的元素加入到容器的时候,vector并不会每次都重新分配大小。

4. vector分配空间策略:vector会分配一些额外的空间以适应可能的增长,因为存储空间比实际需要的存储空间更大。不同的库采用不同的策略权衡空间的使用和重新分配。但是无论如何,重新分配都应该是对数增长的间隔大小,以至于在末尾插入一个元素的时候是在常数时间的复杂度完成的。

5. 因此,vector占用了更多的存储空间,为了获得管理存储空间的能力,并且以一种有效的方式动态增长。

6. 与其它动态序列容器相比(deque, list and forward_list), vector在访问元素的时候更加高效(因为它在内存中是连续的),末尾添加和删除元素相对高效。对于其它不在末尾的删除和插入操作,效率更低。比起list和forward_list统一的迭代器和引用更好

vector的使用:

包含头文件#include<vector> 

构造函数声明

 1.定义(构造函数声明)

构造函数声明接口
vector()(重点)无参构造
vector(size_type n, const value_type& val = value_type())构造并初始化n个val
vector (const vector& x); (重点)拷贝构造
vector (InputIterator first, InputIterator last);使用迭代器进行初始化构造

allocator简单理解

简单了解上面出现的allocator概念:
ps:allocator在C++ 中, alloc 通常和 内存分配有关。
  std::allocator 是C++标准库中的一个 类模板,它用于将 内存分配和对象构造分离开来。例如,当你要创建一个包含自定义类型(如 class MyClass )的容器(像 std::vector )时, std::allocator 就会发挥作用。它可以 高效地获取内存块,并且能够在合适的时候释放这些内存。这有助于优化内存使用,特别是在频繁分配和释放内存的场景下。
 
此外,有些非标准的库或者自定义的代码中也可能会有名为 alloc 的函数或者类,用于实现自定义的内存分配策略,比如实现一个简单的 内存池 避免频繁的系统内存分配调用所带来的开销。

池化技术简单认识 

 什么是池化技术(包括:内存池,线程池,连接池)呢:这里简单了解了解

现在,以一个具体等等例子来讲解:

1.现有一座庙,庙的地点在山顶,住在庙里的和尚。由于山上没有水,只有山下有一湖水。每天起来刷牙,煮饭,和尚每天需要下山来一点一点的取水,这就显得非常麻烦的了而且耽误时间。而有一天,和尚在庙里弄了一个水池,来储存水。这时候,和尚就不需要每天上下山来用水了,减少了上下山所消耗的时间。

2.而C++中的池化技术也是类似的道理:

 优势:减少内存碎片,提高内存分配效率,尤其是在频繁进行小内存分配的场景,如网络编程中服务器频繁创建和销毁小数据包。

 构造函数初始化:

int TestVector1()
{
    // constructors used in the same order as described above:
    1.
    vector<int> first;                                // empty vector of ints
    2.
    vector<int> second(4, 100);                       // four ints with value 100
    3.
    vector<int> third(second.begin(), second.end());  // iterating through second
    4.
    vector<int> fourth(third);                       // a copy of third

    // 下面涉及迭代器初始化的部分,迭代器
    // the iterator constructor can also be used to construct from arrays:
    4.用数组的值进行初始化
    int myints[] = { 16,2,77,29 };
    vector<int> fifth(myints, myints + sizeof(myints) / sizeof(int));

    cout << "The contents of fifth are:";
    for (vector<int>::iterator it = fifth.begin(); it != fifth.end(); ++it)
        cout << ' ' << *it;
    cout << '\n';

    return 0;
}

 

vector迭代器的使用

正向迭代器与反向迭代器:

iterator的使用接口说明
begin + end(重点)获取第一个数据位置的iterator/const_iterator, 获取最后一个数据的下一个位置的iterator/const_iterator
rbegin + rend获取最后一个数据位置的reverse_iterator,获取第一个数据前一个位置的reverse_iterator    (与上面的begin和end相反)

void PrintVector(const vector<int>& v)
{
	// const对象使用const迭代器进行遍历打印
	vector<int>::const_iterator it = v.begin();
	while (it != v.end())
	{
		cout << *it << " ";
		++it;
	}
	cout << endl;
}

ps:范围for同样适用:用法跟之前的string时也是一样的。

int main()
{
    vector<int> v={1,2,3,4,5,6};
    for(auto e:v)
    {
        cout<<e<<" ";
    }
    return 0;
}

vector的增删查改

vector增删查改接口说明
push_back(重点)尾插
pop_back (重点)尾删
find查找。(注意这个是算法模块实现,不是vector的成员接口)
insert在position之前插入val
erase删除position位置的数据
swap交换两个vector的数据空间
operator[] (重点)像数组一样访问

// 尾插和尾删:push_back/pop_back
void TestVector4()
{
	vector<int> v;
	v.push_back(1);
	v.push_back(2);
	v.push_back(3);
	v.push_back(4);

	auto it = v.begin();
	while (it != v.end()) 
	{
		cout << *it << " ";
		++it;
	}
	cout << endl;

	v.pop_back();
	v.pop_back();

	it = v.begin();
	while (it != v.end()) 
	{
		cout << *it << " ";
		++it;
	}
	cout << endl;
}
// 任意位置插入:insert和erase,以及查找find
// 注意find不是vector自身提供的方法,是STL提供的算法
void TestVector5()
{
	// 使用列表方式初始化,C++11新语法
	vector<int> v{ 1, 2, 3, 4 };

	// 在指定位置前插入值为val的元素,比如:3之前插入30,如果没有则不插入
	// 1. 先使用find查找3所在位置
	// 注意:vector没有提供find方法,如果要查找只能使用STL提供的全局find
	auto pos = find(v.begin(), v.end(), 3);
	if (pos != v.end())
	{
		// 2. 在pos位置之前插入30
		v.insert(pos, 30);
	}

	vector<int>::iterator it = v.begin();
	while (it != v.end()) 
	{
		cout << *it << " ";
		++it;
	}
	cout << endl;

	pos = find(v.begin(), v.end(), 3);
	// 删除pos位置的数据
	v.erase(pos);

	it = v.begin();
	while (it != v.end()) {
		cout << *it << " ";
		++it;
	}
	cout << endl;
}

区分:operator[]与at()

operator[]:返回对向量容器中位置n处的元素的引用。

但是,vector::at()是边界检查的,并在请求的位置超出范围后通过异常抛出(out_of_range)的信号。operator[]在vs2022中是通过断言的

operator[]遍历vector对象:


operator[]改变vector对象:

 vector的容量空间:

容量空间接口说明
size获取数据个数
capacity获取容量大小
empty判断是否为空
resize(重点)改变vector的size
reserve (重点)改变vector的capacity
// reisze(size_t n, const T& data = T())
// 将有效元素个数设置为n个,如果时增多时,增多的元素使用data进行填充
// 注意:resize在增多元素个数时可能会扩容
void TestVector3()
{
	vector<int> v;

	// set some initial content:
	for (int i = 1; i < 10; i++)
		v.push_back(i);

	v.resize(5);
	v.resize(8, 100);
	v.resize(12);

	cout << "v contains:";
	for (size_t i = 0; i < v.size(); i++)
		cout << ' ' << v[i];
	cout << '\n';
}

void TestVectorExpand()
{
	size_t sz;
	vector<int> v;
	sz = v.capacity();
	cout << "making v grow:\n";
	for (int i = 0; i < 100; ++i) 
	{
		v.push_back(i);
		if (sz != v.capacity()) 
		{
			sz = v.capacity();
			cout << "capacity changed: " << sz << '\n';
		}
	}
}

不同平台下capacity的增长方式会不同

vs:

linux:

从上面我们可以得出:

vs下capacity是按1.5倍增长的,g++是按2倍增长的。因此,不要固化的认为,vector增容都是2倍,具体增长多少是根据具体的需求定义的。

// 往vecotr中插入元素时,如果大概已经知道要存放多少个元素
// 可以通过reserve方法提前将容量设置好,避免边插入边扩容效率低
void TestVectorExpandOP()
{
	vector<int> v;
	size_t sz = v.capacity();
	v.reserve(100);   // 提前将容量设置好,可以避免一遍插入一遍扩容
	cout << "making bar grow:\n";
	for (int i = 0; i < 100; ++i) 
	{
		v.push_back(i);
		if (sz != v.capacity())
		{
			sz = v.capacity();
			cout << "capacity changed: " << sz << '\n';
		}
	}
}

易错:reserve误区:

使用reserve()开辟好看到的空间后直接使用operator[]来给vector赋值,这是错误的!!!

在  C++  中, std::vector  的  reserve()  函数和  operator[]  的使用存在一些规则和限制,直接在  reserve()  开辟空间后就使用  operator[]  赋值是错误的,

主要原因如下:
 
 reserve()  函数的作用是确保  vector  至少有足够的容量来容纳指定数量的元素,但它不会改变  vector  的  size (元素个数)。 size  表示  vector  中实际已有的元素数量,而  capacity  表示在不重新分配内存的情况下  vector  可以存储的最大元素数量
 
 operator[]  用于访问  vector  中已存在的元素,它不会自动添加新元素。当你在  reserve()  之后直接使用  operator[]  时,由于  size  没有改变, vector  中实际上还没有那么多元素,此时使用  operator[]  访问超出  size  的位置会导致未定义行为(因为该位置可能是无效的内存区域)。

#include <iostream>
#include <vector>
using namespace std;

int main() {
    vector<int> v;
    v.reserve(5);  // 预留 5 个元素的空间,但 size 还是 0
    v[0] = 10;     // 错误,因为 v 的 size 是 0,不存在索引为 0 的元素,这是未定义行为
    return 0;
}

如果确实想通过来赋值,可以先使用 resize()  函数来调整 vector  的 size , resize()  函数不仅会改变 vector  的 size ,如果新的 size  大于原来的 size ,还会在末尾添加默认值初始化的元素,这样就可以安全地使用 operator[]  进行赋值了。

或者说使用push_back,每次插入一个

#include <iostream>
#include <vector>
using namespace std;

int main() {
    vector<int> v;
    v.reserve(5);  // 预留 5 个元素的空间
    v.resize(5);   // 调整 size 为 5,元素初始化为 0
    v[0] = 10;     // 现在可以安全地使用 operator[] 赋值
    for (int i : v) {
        cout << i << " ";
    }
    return 0;
}

综上:不能在 reserve()  开辟空间后直接使用 operator[]  赋值,因为 reserve()  没有改变 size , operator[]  访问超出 size  的位置会导致未定义行为。

sort排序

1.sort()函数是STL中算法部分的一个接口。这个函数是在OJ题中是频繁使用到的。

2.调用sort时需要另外包含头文件#include<algorithm>

3.简单了解:

小于:

大于: 

4.sort默认情况下是升序,若想要降序,则需要用greater辅助。

5.从上面我们可以看到,参数是一个类模板,所以sort可以是int,string,数组等等都可以排序的。

find()函数 

**重点**:

迭代器失效问题(分析)

概念:

迭代器失效是指在使用迭代器遍历容器(如 vector 、 list 等)的过程中,由于容器的结构发生改变,导致原来的迭代器不再有效。

迭代器的主要作用就是让算法能够不用关心底层数据结构,其底层实际就是一个指针,或者是对指针进行了封装,比如:vector的迭代器就是原生态指针T* 。因此迭代器失效,实际就是迭代器底层对应指针所指向的空间被销毁了,而使用一块已经被释放的空间,造成的后果是程序崩溃(即如果继续使用已经失效的迭代器,程序可能会崩溃)。

造成迭代器失效的原因:

引起其底层空间改变的操作

1.会引起其底层空间改变的操作,都有可能是迭代器失效,比如:resize、reserve、insert、assign、push_back等。

我们知道预留空间时,一旦发生扩容,那么它实质上就是开一个新的空间,然后赋值过去,给原来的,这时候就会产生指向的空间被销毁的问题。

对应上面的函数,我们不妨去看看string的模拟实现那里看看它对应是如何实现函数的内容的,一旦有开一个新空间,如何在赋值拷贝给它,指向的空间发生变化,因此,就出现了迭代器失效的问题了。

string的模拟实现_string& s0 = strs[0];-CSDN博客


int main()
{
vector<int> v{1,2,3,4,5,6};
auto it = v.begin();
// 将有效元素个数增加到100个,多出的位置使用8填充,操作期间底层会扩容
// v.resize(100, 8);
// reserve的作用就是改变扩容大小但不改变有效元素个数,操作期间可能会引起底层容量改变
// v.reserve(100);
// 插入元素期间,可能会引起扩容,而导致原空间被释放
// v.insert(v.begin(), 0);
// v.push_back(8);
// 给vector重新赋值,可能会引起底层容量改变
v.assign(100, 8);

从上面我们可以看到,一旦发生扩容,vector底层原理旧空间被释放掉,而在打印时,it还使用的是释放之间的旧空间,在对it迭代器操作时,实际操作的是一块已经被释放的空间,而引起代码运行时崩溃,这就是迭代器失效!!

指定位置元素的删除操作--erase
 

int main()
{
int a[] = { 1, 2, 3, 4 };
vector<int> v(a, a + sizeof(a) / sizeof(int));
// 使用find查找3所在位置的iterator
vector<int>::iterator pos = find(v.begin(), v.end(), 3);
// 删除pos位置的数据,导致pos迭代器失效。
v.erase(pos);
cout << *pos << endl; // 此处会导致非法访问
return 0;
}

erase删除pos位置元素后,pos位置之后的元素会往前搬移,没有导致底层空间的改变,理论上讲迭代器不应该会失效,

但是:如果pos刚好是最后一个元素,删完之后pos刚好是end的位置,而end位置是没有元素的,那么pos就失效了。因此删除vector中任意位置上元素时,vs就认为该位置迭代器失效了(这里挺好理解的,就不画图了)。

 删除所有的偶数:

我们发现,它出现了迭代器失效的问题:其理由就是上面所说迭代情况。

那么我们该怎么改正它呢?

 *******在使用前,对迭代器重新赋值即可******

区别差异:不同平台下,处理迭代器失效的问题的方式会不同:

vs平台下,它会出现直接强制检查,因此只要有迭代器失效,统统报错。

Linux的centos的g++编译器下:它有时尽管出现了迭代器失效的问题,但是仍然可以跑的。只是输出的结果不对而已!

  删除所有的偶数:(Linux中)也是错误。

关于vector的基础知识分享就到处结束了。

最后,到了我们本次鸡汤环节:

下面文字与大家共勉!

 

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.coloradmin.cn/o/2328703.html

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈,一经查实,立即删除!

相关文章

ubuntu 22.04 解决LXC 报错CGroupV1 host system

解决CGroupV1 host system 报错 echo "cgroupv1 environment" sed -i s/^GRUB_CMDLINE_LINUX.*/GRUB_CMDLINE_LINUX_DEFAULT"quiet splash systemd.unified_cgroup_hierarchy0" / /etc/default/grub update-grub reboot 下载oracle 7 Linux 容器测试 l…

JavaEE初阶复习(JVM篇)

JVM Java虚拟机 jdk java开发工具包 jre java运行时环境 jvm java虚拟机(解释执行 java 字节码) java作为一个半解释,半编译的语言,可以做到跨平台. java 通过javac把.java文件>.class文件(字节码文件) 字节码文件, 包含的就是java字节码, jvm把字节码进行翻译转化为…

MINIQMT学习课程Day9

获取qmt账号的持仓情况后&#xff0c;我们进入下一步&#xff0c;如何获得当前账号的委托状况 还是之前的步骤&#xff0c;打开qmt&#xff0c;选择独立交易&#xff0c; 之后使用pycharm&#xff0c;编写py文件 导入包&#xff1a; from xtquant import xtdata from xtqua…

动态规划似包非包系列一>组合总和IIV

目录 题目分析&#xff1a;状态表示&#xff1a;状态转移方程&#xff1a;初始化填表顺序返回值&#xff1a;代码呈现&#xff1a; 题目分析&#xff1a; 状态表示&#xff1a; 状态转移方程&#xff1a; 初始化填表顺序返回值&#xff1a; 代码呈现&#xff1a; class Soluti…

Java 二叉树非递归遍历核心实现

非递归遍历的核心是用栈模拟递归的调用过程&#xff0c;通过手动维护栈来替代系统栈&#xff0c;实现前序、中序和后序遍历。以下是三种遍历的代码实现与关键逻辑分析&#xff1a; 一、二叉树遍历 1.1、前序遍历&#xff08;根 → 左 → 右&#xff09; 核心逻辑&#xff1a;…

【力扣hot100题】(052)课程表

什么人一学期要上2000节课啊jpg 看了非常久都没思路&#xff0c;主要是数据结构还没复习到图论&#xff0c;根本没思路怎么储存一个图…… 唯一记得的就是两种存储方法&#xff0c;一种是二维数组法&#xff0c;记录每一条边的有无&#xff0c;一种是只记录有的边&#xff0c…

SpringBoot配置文件多环境开发

目录 一、设置临时属性的几种方法 1.启动jar包时&#xff0c;设置临时属性 ​2.idea配置临时属性 3.启动类中创建数组指定临时属性 二、多环境开发 1.包含模式 2.分组模式 三、配置文件的优先级 1.bootstrap 文件优先&#xff1a; 2.特定配置文件优先 3.文件夹位置优…

RSA和ECC在密钥长度相同的情况下哪个更安全?

​现在常见的SSL证书&#xff0c;如&#xff1a;iTrustSSL都支持RSA和ECC的加密算法&#xff0c;正常情况下RAS和ECC算法该如何选择呢&#xff1f;实际上在密钥长度相同的情况下&#xff0c;ECC&#xff08;椭圆曲线密码学&#xff09;通常比RSA&#xff08;Rivest-Shamir-Adle…

Dive into Deep Learning - 2.4. Calculus (微积分)

Dive into Deep Learning - 2.4. Calculus {微积分} 1. Derivatives and Differentiation (导数和微分)1.1. Visualization Utilities 2. Chain Rule (链式法则)3. DiscussionReferences 2.4. Calculus https://d2l.ai/chapter_preliminaries/calculus.html For a long time, …

9.进程信号

信号量 信号量是什么&#xff1f; ​ 本质是一个计数器&#xff0c;通常用来表示公共资源中&#xff0c;资源数量多少的问题。 ​ 公共资源&#xff1a;可以被多个进程同时访问的资源。 访问没有保护的公共资源会导致数据不一致问题 什么是数据不一致问题 ​ 由于公共资源…

python爬虫:小程序逆向(需要的工具前期准备)

前置知识点 1. wxapkg文件 如何查看小程序包文件 打开wechat的设置&#xff1a; .wxapkg概述 .wxapkg是小程序的包文件格式&#xff0c;且其具有独特的结构和加密方式。它不仅包含了小程序的源代码&#xff0c;还包括了图像和其他资源文件&#xff0c;这些内容在普通的文件…

PGSQL 对象创建函数生成工具

文章目录 代码结果 代码 <!DOCTYPE html> <html lang"zh"> <head><meta charset"UTF-8"><meta name"viewport" content"widthdevice-width, initial-scale1.0"><title>PGSQL 函数生成器</tit…

查询当前用户的购物车和清空购物车

业务需求&#xff1a; 在小程序用户端购物车页面能查到当前用户的所有菜品或者套餐 代码实现 controller层 GetMapping("/list")public Result<List<ShoppingCart>> list(){List<ShoppingCart> list shoppingCartService.shopShoppingCart();r…

八、重学C++—动态多态(运行期)

上一章节&#xff1a; 七、重学C—静态多态&#xff08;编译期&#xff09;-CSDN博客https://blog.csdn.net/weixin_36323170/article/details/146999362?spm1001.2014.3001.5502 本章节代码&#xff1a; cpp/dynamicPolymorphic.cpp CuiQingCheng/cppstudy - 码云 - 开源中…

饮食助力进行性核上性麻痹患者,提升生活质量

进行性核上性麻痹是一种少见的神经系统变性疾病&#xff0c;患者会出现姿势不稳、眼球运动障碍等症状。合理的饮食对于维持患者身体机能、延缓病情发展有重要意义。 高蛋白质食物是饮食结构的重要部分。像瘦肉、去皮禽肉、鱼类、豆类及其制品&#xff0c;还有低脂奶制品等&…

bun 版本管理工具 bum 安装与使用

在使用 node 的过程中&#xff0c;我们可能会因为版本更新或者不同项目的要求而频繁切换 node 版本&#xff0c;或者是希望使用更简单的方式安装不同版本的 node&#xff0c;这个时候我们一般会用到 nvm 或者类似的工具。 在我尝试使用 bun 的时候&#xff0c;安装前第一个想到…

木马学习记录

一句话木马是什么 一句话木马就是仅需要一行代码的木马&#xff0c;很简短且简单&#xff0c;木马的函数将会执行我们发送的命令 如何发送命令&#xff06;发送的命令如何执行? 有三种方式&#xff1a;GET&#xff0c;POST&#xff0c;COOKIE&#xff0c;一句话木马中用$_G…

决策树实战:用Python实现智能分类与预测

目录 一、环境准备 二、数据加载与探索 三、数据预处理 四、决策树模型构建 五、模型可视化&#xff08;生成决策树结构图&#xff09; 六、模型预测与评估 七、超参数调优&#xff08;网格搜索&#xff09; 八、关键知识点解析 九、完整项目开发流程 十、常见问题解…

Crond任务调度

今天我们来看看任务调度,假如我们正在睡觉,突然有个半夜两点的任务要你备份一下数据库,你怎么办&#xff1f;难道从被窝中爬起来吗&#xff1f;显然不合理,此时就需要我们定时任务调度程序了. 原理图&#xff1a; crontab 进行定时任务的调度 概述. 任务调度:是指系统在某个…

HTML5+CSS3+JS小实例:带滑动指示器的导航图标

实例:带滑动指示器的导航图标 技术栈:HTML+CSS+JS 效果: 源码: 【HTML】 <!DOCTYPE html> <html lang="zh-CN"> <head><meta charset="UTF-8"><meta name="viewport" content="width=device-width, ini…