Spring Boot 三层架构【清晰易懂】

news2025/4/1 9:02:25

Spring Boot 的三层架构是一种常见的软件设计模式,它将应用程序分为三个主要部分:控制器层(Controller)、服务层(Service) 和 数据访问层(Repository)。这种分层架构有助于代码的模块化和复用,使应用程序更易于维护和扩展


一、表示层(Controller)

  • 含义:这一层是用户和系统交互的接口,是用户看到并使用的部分。一般由控制器(Controller)组成,负责接收用户请求和返回处理结果
  • 作用:表示层接收用户请求,把请求数据交给业务层处理,最后将业务层的结果返回给用户。它相当于应用的“前台”,负责和用户“对话”。

例子

package com.example.demo.controller;

import com.example.demo.service.HelloService;
import org.springframework.beans.factory.annotation.Autowired;
import org.springframework.web.bind.annotation.GetMapping;
import org.springframework.web.bind.annotation.RestController;

@RestController
public class HelloController {

    @Autowired
    private HelloService helloService;

    @GetMapping("/hello")
    public String hello() {
        return helloService.getMessage();
    }
}

在这个例子中,HelloController 接收用户的 HTTP 请求,并调用 HelloService 来获取数据,然后将结果返回给用户。


二、业务层(Service)

  • 含义:业务层包含了应用的核心逻辑,即系统如何处理数据和实现业务规则。它是整个系统的“大脑”。
  • 作用:业务层接收表示层传来的请求数据,执行具体的业务逻辑,比如计算、验证、状态更新等。处理完之后,它将结果返回给表示层。通过将业务逻辑集中在这一层,系统的核心规则更加明确,也便于后续修改和维护。

例子

package com.example.demo.service;

import org.springframework.stereotype.Service;

@Service
public class HelloService {

    public String getMessage() {
        return "Hello, Spring Boot!";
    }
}

在这个例子中,HelloService 提供了一个简单的业务逻辑方法 getMessage(),它返回一条消息。


三、数据访问层(Repository)

  • 含义:数据访问层负责和数据库打交道。它提供了读取、存储、更新和删除数据的接口。
  • 作用:数据访问层负责从数据库中取出数据,或者将数据存入数据库。它相当于系统的“数据存储员”,将数据管理的细节与业务逻辑分离开来,使得业务层不需要关注具体的数据操作。

例子: 假设我们有一个 User 实体类和一个 UserRepository 接口:

package com.example.demo.model;

import javax.persistence.Entity;
import javax.persistence.GeneratedValue;
import javax.persistence.GenerationType;
import javax.persistence.Id;

@Entity
public class User {
    @Id
    @GeneratedValue(strategy = GenerationType.IDENTITY)
    private Long id;
    private String name;
    private String email;

    // Getters and Setters
}
package com.example.demo.repository;

import com.example.demo.model.User;
import org.springframework.data.jpa.repository.JpaRepository;
import org.springframework.stereotype.Repository;

@Repository
public interface UserRepository extends JpaRepository<User, Long> {
}

在这个例子中,UserRepository 是一个接口,它继承了 JpaRepository,提供了基本的数据库操作方法。

三层架构的好处

1. 模块清晰:每一层都有单一的职责,代码结构清晰。

2. 便于维护:各层相互独立,修改其中一层时不会影响其他层。

3. 便于测试:可以单独测试业务逻辑、数据访问等,方便调试和排错。

4. 提高代码复用:业务层和数据层的代码可以被多个界面或模块重复利用。

三层架构帮助我们将系统逻辑分隔开来,使得代码更易管理、扩展和维护,是一种构建稳定可靠应用的好方法。


完整的代码示例

假设我们要创建一个简单的用户管理系统,用户可以通过 HTTP 请求添加和获取用户信息。

1. 实体类(User)
package com.example.demo.model;

import javax.persistence.Entity;
import javax.persistence.GeneratedValue;
import javax.persistence.GenerationType;
import javax.persistence.Id;

@Entity
public class User {
    @Id
    @GeneratedValue(strategy = GenerationType.IDENTITY)
    private Long id;
    private String name;
    private String email;

    // Getters and Setters
}
2. 数据访问层(UserRepository)
package com.example.demo.repository;

import com.example.demo.model.User;
import org.springframework.data.jpa.repository.JpaRepository;
import org.springframework.stereotype.Repository;

@Repository
public interface UserRepository extends JpaRepository<User, Long> {
}
3. 业务层(UserService)
package com.example.demo.service;

import com.example.demo.model.User;
import com.example.demo.repository.UserRepository;
import org.springframework.beans.factory.annotation.Autowired;
import org.springframework.stereotype.Service;

import java.util.List;

@Service
public class UserService {

    @Autowired
    private UserRepository userRepository;

    public List<User> getAllUsers() {
        return userRepository.findAll();
    }

    public User saveUser(User user) {
        return userRepository.save(user);
    }
}
4. 表示层(UserController)
package com.example.demo.controller;

import com.example.demo.model.User;
import com.example.demo.service.UserService;
import org.springframework.beans.factory.annotation.Autowired;
import org.springframework.web.bind.annotation.*;

import java.util.List;

@RestController
@RequestMapping("/users")
public class UserController {

    @Autowired
    private UserService userService;

    @GetMapping
    public List<User> getAllUsers() {
        return userService.getAllUsers();
    }

    @PostMapping
    public User createUser(@RequestBody User user) {
        return userService.saveUser(user);
    }
}

总结

Spring Boot 的三层架构将应用程序分为控制器层、服务层和数据访问层,每一层都有明确的职责:

  • 控制器层:处理用户请求,调用服务层。

  • 服务层:处理业务逻辑。

  • 数据访问层:与数据库交互,执行数据操作。

这种分层架构有助于代码的模块化和复用,使应用程序更易于维护和扩展。

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.coloradmin.cn/o/2324151.html

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈,一经查实,立即删除!

相关文章

Agent AI综述

Agent AI综述 研究背景:早期AI研究目标分散,如今大语言模型(LLMs)和视觉语言模型(VLMs)的发展带来新契机,促使AI向能在复杂环境中担当动态角色的方向转变。Agent AI正是在这种背景下应运而生,融合语言、视觉等多种能力,有望重塑人类体验和产业标准。 Agent AI的融合:…

WPF ContentPresenter详解2

ContentPresenter与ContentControl的区别 ContentControl 和 ContentPresenter 是 WPF 中两个相关的控件&#xff0c;但它们在用途和功能上有一些关键的区别。理解这两者的区别和联系有助于更好地设计和开发用户界面。 1. 类层次结构 ContentControl&#xff1a;位于 WPF 控件…

CSS——变换、过度与动画

巧妙的使用变换、过度与动画可以让页面设计更有趣、更吸引人&#xff0c;同时还能提高可用性和感知性能。 文章目录 一&#xff0c;变换&#xff08;一&#xff09;2D变换1&#xff0c;定义旋转2&#xff0c;定义缩放3&#xff0c;定义移动4&#xff0c;定义倾斜5&#xff0c;定…

【PCB工艺】时序图(Timing Diagram)

时序图&#xff08;Timing Diagram&#xff09;是描述数字电路信号随时间变化的图示&#xff0c;广泛用于分析和设计时序逻辑电路&#xff0c;如锁存器&#xff08;Latch&#xff09;、触发器&#xff08;Flip-Flop&#xff09;、计数器、状态机等。这篇文章从时序图的原理、构…

第四届能源、电力与电气国际学术会议(ICEPET 2025)

重要信息 地点&#xff1a;中国-成都 官网&#xff1a;www.icepet.net&#xff08;了解参会投稿等信息&#xff09; 时间&#xff1a;2025年4月25-27日 简介 第四届能源、电力与电气会&#xff08;ICEPET 2025定于2025年4月25-27日在中国成都举办。 本次将围绕能源、电力及…

【机器学习】什么是逻辑回归?

什么是逻辑回归&#xff1f; 逻辑回归&#xff08;Logistic Regression&#xff09;是一个用于分类问题的统计学模型&#xff0c;尽管名字里有“回归”二字&#xff0c;它其实是用来做分类的&#xff0c;不是做数值预测的。 通俗易懂的理解 我们可以通过一个简单的例子来理解…

【Bug】记录2025年遇到的Bug以及修复方案

--------------------------------------------------------分割线 2025.3.25-------------------------------------------------------windows环境下通过命令行终端&#xff08;必须是命令行下&#xff0c;直接赋值传递&#xff0c;代码正常&#xff09;的形式传递字符串时&a…

【NLP 46、大模型技术发展】

目录 一、ELMo 2018 训练目标 二、GPT-1 2018 训练目标 三、BERT 2018 训练目标 四、Ernie —— baidu 2019 五、Ernie —— Tsinghua 2019 六、GPT-2 2019 七、UNILM 2019 八、Transformer - XL & XLNet 2019 1.模型结构 Ⅰ、循环机制 Recurrence Mechanism Ⅱ、相对位置…

《Python实战进阶》No34:卷积神经网络(CNN)图像分类实战

第34集&#xff1a;卷积神经网络&#xff08;CNN&#xff09;图像分类实战 2025年3月28日更新 增加了 CNN和AI大模型关系的说明。 2025年3月29日更新了代码&#xff0c;优化损失系数曲线可视化。 详细环境配置依赖和可一次性复制的完整代码见文末。 摘要 最近大模型推陈出新迭…

【qt】 布局器

参考博客&#xff1a;https://blog.csdn.net/Fdog_/article/details/107522283 目录 布局管理器概念常见的布局管理器及特点&#x1f535;QHBoxLayout水平布局&#x1f535;QVBoxLayout垂直布局 &#x1f535;QGridLayout网格布局 &#x1f535;QFormLayout表单布局 QT 高级布…

VMware Windows Tools 存在认证绕过漏洞(CVE-2025-22230)

漏洞概述 博通公司&#xff08;Broadcom&#xff09;近日修复了 VMware Windows Tools 中存在的一个高危认证绕过漏洞&#xff0c;该漏洞编号为 CVE-2025-22230&#xff08;CVSS 评分为 9.8&#xff09;。VMware Windows Tools 是一套实用程序套件&#xff0c;可提升运行在 VM…

【问题解决】Linux安装conda修改~/.bashrc配置文件后,root 用户下显示 -bash-4.2#

问题描述 在Linux安装conda下的python环境时候&#xff0c;修改了~/.bashrc文件&#xff0c;修改完成后&#xff0c;再次进入服务器后&#xff0c;登录时候显示的不是正常的[rootlocalhost ~]#&#xff0c;而是-bash-4.2# 原因分析&#xff1a; 网上原因有&#xff1a;/root下…

RabbitMQ 技术详解:异步消息通信的核心原理与实践

这里写目录标题 RabbitMQ 技术详解&#xff1a;异步消息通信的核心原理与实践一、RabbitMQ 本质剖析核心架构组件 二、核心功能与应用场景主要作用典型应用场景 三、工作流程深度解析消息传递流程关键协议机制 四、Java 实现示例1. 依赖配置&#xff08;Maven&#xff09;2. 消…

LLM架构解析:NLP基础(第一部分)—— 模型、核心技术与发展历程全解析

本专栏深入探究从循环神经网络&#xff08;RNN&#xff09;到Transformer等自然语言处理&#xff08;NLP&#xff09;模型的架构&#xff0c;以及基于这些模型构建的应用程序。 本系列文章内容&#xff1a; NLP自然语言处理基础&#xff08;本文&#xff09;词嵌入&#xff0…

k近邻算法K-Nearest Neighbors(KNN)

算法核心 KNN算法的核心思想是“近朱者赤&#xff0c;近墨者黑”。对于一个待分类或预测的样本点&#xff0c;它会查找训练集中与其距离最近的K个样本点&#xff08;即“最近邻”&#xff09;。然后根据这K个最近邻的标签信息来对当前样本进行分类或回归。 在分类任务中&#…

【Android15 ShellTransitions】(九)结束动画+Android原生ANR问题分析

finishTransition这部分的内容不多&#xff0c;并且我个人的实际工作中很少接触这块&#xff0c;因此我之前都觉得没有必要专门开一篇去分析最后留下的这一丁点儿的动画流程。但是最近碰到了一个google原生ANR问题&#xff0c;正好是和这块相关的&#xff0c;也让我意识到了fin…

如何让DeepSeek-R1在内网稳定运行并实现随时随地远程在线调用

前言&#xff1a;最近&#xff0c;国产AI圈里的新星——Deepseek&#xff0c;简直是火到不行。但是&#xff0c;你是不是已经对那些千篇一律的手机APP和网页版体验感到腻味了&#xff1f;别急&#xff0c;今天就带你解锁一个超炫的操作&#xff1a;在你的Windows电脑上本地部署…

STM32通用定时器结构框图

STM32单片机快速入门 通用定时器框图 TIM9和TIM12 通用定时器框图 TIM9和TIM12 &#xff08;二&#xff09; 通用定时器框图

How to install vmware workstation pro on Linux mint 22

概述 VMware 是一家专注于虚拟化技术和云计算解决方案的全球领先软件公司&#xff0c;成立于1998年&#xff0c;总部位于美国加州。它的核心技术是通过“虚拟化”将一台物理计算机的硬件资源&#xff08;如CPU、内存、存储等&#xff09;分割成多个独立的虚拟环境&#xff08;…

深度学习 Deep Learning 第11章 实用方法论

深度学习 Deep Learning 第11章 实用方法论 章节概述 本章深入探讨了机器学习在实际应用中的方法论&#xff0c;强调了从确定目标到逐步优化的系统性过程。在机器学习项目中&#xff0c;明确的目标和性能指标是指导整个开发过程的关键。通过建立初始的端到端系统&#xff0c;…