51c嵌入式~三极管~合集1

news2025/3/31 3:18:28

我自己的原文哦~     https://blog.51cto.com/whaosoft/12208603

一、PNP与NPN两种三极管使用方法

    分享这篇文章总结下关于NPN和PNP两种型号三极管的使用和连接方法。

    在单片机应用电路中三极管主要的作用就是开关作用。

PNP与NPN两种三极管使用方法

图片

    上图中,横向左侧的引脚叫做基极b,有一个箭头的是发射极e,剩下的一个引脚就是集电极 c。 

    首先来说一下NPN型,这种型号的三极管在用于开关状态时,大都是发射极接地,集电极接高电平,基极接控制信号。

    其次对于PNP型的三极管,用于开关状态时,一般都是发射极接高电平,基极接控制信号。三极管导通时,电流从发射极流向集电极。​

三极管的开关原理

    三极管有截止、放大、饱和三种工作状态。

    放大状态主要应用于模拟电路中,且用法和计算方法也比较复杂,我们暂时用不到。

    而数字电路主要使用的是三极管的开关特性,只用到了截止与饱和两种状态。

    三极管的用法特点,关键点在于 b 极(基极)和 e 级(发射极)之间的电压情况,对于PNP 而言,e 极电压只要高于 b 级 0.7V 以上,这个三极管 e 级和 c 级之间就可以顺利导通。

    同理,NPN 型三极管的导通条件是 b 极比 e 极电压高 0.7V。

    总之是箭头的始端比末端高 0.7V 就可以导通三极管的 e 极和 c 极。

图片

    以上图PNP三极管为例,基极通过一个 10K 的电阻接到了单片机的一个 IO口上,假定是 P1.0,发射极直接接到 5V 的电源上,集电极接了一个 LED 小灯,并且串联了一个 1K 的限流电阻最终接到了电源负极 GND 上。

    如果 P1.0 由我们的程序给一个高电平 1,那么e到 b 不会产生一个 0.7V 的压降,这个时候,发射极和集电极也就不会导通,那么竖着看这个电路在三极管处是断开的,没有电流通过,LED2 小灯也就不会亮。

    如果程序给 P1.0 一个低电平 0,这时 e 极还是 5V,于是 e 和 b 之间产生了压差,三极管 e 和 b 之间也就导通了,三极管 e 和 b 之间大概有 0.7V 的压降,那还有(5-0.7)V 的电压会在电阻 R47 上。这个时候,e 和 c 之间也会导通了,那么 LED 小灯本身有 2V 的压降,三极管本身 e 和 c 之间大概有 0.2V的压降,我们忽略不计。那么在 R41 上就会有大概 3V 的压降,可以计算出来,这条支路的电流大概是 3mA,可以成功点亮 LED。

三极管饱和状态

    最后一个概念,电流控制。前边讲过,三极管有截止,放大,饱和三个状态。我们要让这个三极管处于饱和状态,就是我们所谓的开关特性,必须要满足一个条件。三极管都有一个放大倍数β,要想处于饱和状态,b 极电流就必须大于 e 和 c 之间电流值除以β。这个β,对于常用的三极管大概可以认为是 100。

    那么上边的 R47 的阻值我们必须要来计算一下了。刚才我们算过了,e 和 c 之间的电流是 3mA,那么 b 极电流最小就是 3mA 除以 100 等于30uA,大概有 4.3V 电压会落在基极电阻上,那么基极电阻最大值就是 4.3V/30uA = 143K。电阻值只要比这个值小就可以,当然也不能太小,太小会导致单片机的 IO 口电流过大烧坏三极管或者单片机。

二、三极管的应用电路

 三极管有三个工作状态:截止、放大、饱和,放大状态很有学问也很复杂,多用于集成芯片,比如运放,现在不讨论。

    其实,对信号的放大我们通常用运放处理,三极管更多的是当做一个开关管来使用,且只有截止、饱和两个状态。

    截止状态看作是关,饱和状态看作是开。

    Ib≥1mA时,完全可以保证三极管工作在饱和状态,对于小功率的三极管此时Ic为几十到几百mA,驱动继电器、蜂鸣器等功率器件绰绰有余。

三极管电路举例

    把三极管箭头理解成一个开关,如下图为NPN型三极管,按下开关S1,约1mA的Ib流过箭头,三极管工作在饱和状态,c极到e极完全导通,c极电平接近0V(GND),负载RL两端压降接近5V。

    Ib与Ic电流都流入e极,根据电流方向,e极为低电平,应接地,c极接负载和电源。

图片

    如下图为PNP型三极管,按下开关S2,约1mA的Ib流过箭头,三极管工作在饱和状态,e极到c极完全导通,c极电平接近5V,负载RL两端压降接近5V。

    Ib与Ic电流都流出e极,根据电流方向,e极为高电平,应接电源,c极接负载和地。

图片

    如下图NPN三极管,对于NPN三极管更应该在b极加一个下拉电阻,一是为了保证b、e极间电容加速放电,加快三极管截止;二是为了保证给三极管b极一个已知逻辑状态,防止控制输入端悬空或高阻态时对三极管工作状态的不确定。

图片

    如下图是PNP三极端,对于PNP三极管,更应该在b极加一个上拉电阻,原理同上。

图片

    下图NPN三极管,对于感性负载,必须在负载两端并联一个反向续流二极管,因为三极管在关断时,线圈会自感产生很高的反向电动势,而续流二极管提供的续流通路,同时钳位反向电动势,防止击穿三极管。

    续流二极管的选型必须是快恢复二极管或肖特基二极管,两者响应速度快。

图片

    如下图的NPN三极管,对于某些控制信号为低电平时,可能并不是真正的0V,一般在1V以内,为保证三极管完全截止,不得不在三极管b极加一个反向稳压管或正向二极管,以提高三极管导通的阈值电压。

    根据个人经验,推挽输出的数字信号不用加,OC输出、二极管输出以及延时控制有必要加,通常稳压管正常的工作电流≥1mA。

图片

    下图是用三极管实现继电器的延时控制的例子。

    为三极管延时导通,快速关断的一个仿真电路,D1、R2、C1、D2构成延时导通Q2的回路,C1的电压为12V的时候Q2导通,R3、Q1、R4、R1构成快速关断Q2的回路,C1通过R3和Q1快速放电。

图片

要点

  • 对于NPN三极管,在不考虑三极管的情况下,b极电阻与下拉电阻的分压必须大于0.7V,PNP同理。
  • b极电流必须≥1mA可保证三极管处于饱和状态,此时Ic满足三极管最大的驱动能力。
  • 另外,对于三极管的放大倍数β,指的是输出电流的驱动能力放大了β,比如100倍,并不是把输出电流真正的放大了100倍。

三、玩转三极管

 三极管的管型及管脚的判别是电子技术初学者的一项基本功,为了帮助读者迅速掌握测判方法,笔者总结出四句口诀:“三颠倒,找基极;PN结,定管型;顺箭头,偏转大;测不准,动嘴巴。”下面让我们逐句进行解释吧。

1 三颠倒,找基极

    我们知道,三极管内部有两个PN结,三极管是PNP型还是NPN型的区别就是两个PN结的连接方式不同。

    如图1所示是三极管及等效电路。

图1:三极管及等效电路

    测量三极管是要使用万用表的欧姆档,档位的选择可以是Rx100档位,也可以是Rx1k档位。

    我们知道,万用表在欧姆档时红表笔在万用表内接的是电池的负极,黑表笔连接着表内电池的正极。

    下面的测量都是基于三极管没有损坏的情况下测试的,如果三极管已损坏,下面的测试方法就不合适了。

     在我们不知道被测三极管是什么类型的时候(PNP型还是NPN型),这个时候一般也不会知道各管脚是什么电极。测试的第一步是先找出来这个三极管的基极。我们先任取三极管三个引脚中的两个(例如取1脚和2脚),用万用表两只表笔测量一下这两脚之间的电阻(正向电阻),然后将表笔翻转再测量一下两脚之间的电阻(反向电阻);接下来依次测量1脚、3脚之间的正、反向电阻,以及2、3脚之间的正、反向电阻。比较这三次测量出来的正、反向电阻,一定有两次的测量结果接近:即两次测量的正向电阻接近、负向电阻也接近;那么剩下的一次必然是正、反向电阻都较大,于是,可以得出结论,正、反向电阻都偏大的那一次,未测量的那个引脚就是这只三极管的基极(图2)。

图2:NPN型和PNP型三极管结构

三极管的发射极箭头方向一定是电流方向对吗?   

 三极管的发射极箭头方向一定是电流方向,这是错误的。这应该是书本没有告诉我们的知识。

    三极管B,C,E极之间的有没有电流以及电流的方向取决于B,E极,C,E极之间的电压偏置。

    根据偏置电压的方向和大小,一般三极管有三种工作状态:截止状态,放大状态以及饱和导通状态。

    截止状态下,B,E极之间,C,E极之间都没有电流流过。

    放大状态或者饱和导通状态下,如果是NPN型的三极管,电流从B极以及C极流向E极,如果是PNP型的三极管,电流从E极流向B极以及C极。不管是NPN不容小觑是PNP,E极电流的方向和三极管电气符号所标的箭头方向是一致的。

2 PN结,定管型

    找出这只三极管的基极引脚之后,就可以根据基极与另外两个电极之间PN结的方向来确定该只三极管是PNP型还是NPN型。

     将万用表的黑表笔连接到该只三极管的基极,红表笔连接到另外两个电极中的任何一个,如果表头指针偏转角度很大,则说明这只三极管是NPN型三极管,如果表头指针偏转角度很小,说明这只三极管为PNP型三极管。

3 顺箭头,偏转大

    从上面两个步骤我们已经找出了这只三极管的基极,以及这只三极管是那种类型的三极管,接下来就要判断哪个引脚是集电极,哪个引脚是发射极了。

     这时我们可以用测试穿透电流的方法来确定集电极和发射极。 

1、对于NPN型三极管,用万用表的黑表笔、红表笔颠倒测量两个电极之间的正、反向电阻,虽然两次测量中万用表偏转角度都很小,但仔细观察,总能判别出哪一次的偏转稍大,哪一次的偏转稍小,偏转角度稍大的电流流向是:黑表笔-集电极-基极-发射极-红表笔,电流流向正好与三极管电路符号中的箭头方向一致(这就是我们这一步骤的口诀“顺箭头”)。由此可以判断,此时黑表笔接的是集电极,红表笔接的是发射极(图3)。 

2、对于PNP型三极管,道理类似。

图3:测试穿透电流的⽅法来确定集电极和发射极

4 测不准,动嘴巴

    如果在“顺箭头,偏转大”的测量过程中,由于颠倒前后两次测量指针偏转角度都很小,实在难以区分,就要“动嘴巴”了,具体方法是,在“顺箭头,偏转大”的判别方法的两次测量中,用两只手分别捏住两表笔与管脚的结合部位,用嘴巴含住基极,仍用“顺箭头,偏转大”的判别方法即可区分出来集电极和发射极,其中原理是由于人体起到直流偏置电阻的作用,湿测量效果更加明显。

四、三极管滤波

如下图1是无刷电机霍尔信号的滤波电路,为了保证波形质量,简单的阻容滤波并不能完全解决实际复杂的工作环境所带来的波形异常,量产的无刷驱动模块也有该电路。

    为了保证滤波质量,在RC滤波后面加一个NPN三极管,利用三极管自身的响应速度达到高质量滤波目的。

    三极管响应速度有个最小宽度要求,通常是几十个纳秒到几百纳秒,信号大于最小脉宽要求才能保证正常输出而不失真。

图1:无刷电机霍尔信号滤波

    通常在做驱动的时候,会遇到霍尔信号或编码器信号的处理,该信号是脉冲(方波)信号,在滤波之前的波形如图1左边所示,实际上毛刺会更多更杂。

    毛刺宽度一般只有几十个纳秒,在RC滤波后面加上一个三极管后可根本滤除毛刺,让输出更干净,质量更高,如图1右边所示。

    图2、图3、图4是实测无刷电机霍尔信号滤波前后的波形对比,红色波形代表霍尔信号滤波前的;蓝色波形代表霍尔信号滤波后的。滤波前的毛刺异常恐怖。

图片

图2:滤波前后对比

图片

图3:滤波前后对比(放大)

图片

图4:滤波前后对比(再放大)

    图5是实测无刷电机霍尔信号经过RC滤波后和三级管后滤波的波形对比,红色波形代表霍尔信号经过RC滤波后的,蓝色波形代表霍尔信号经过RC滤波再经过三极管滤波后的;

    注:两个波形没有反相,是因为上面那个红色波形一直在左右晃动,随机抓取的。

图5:RC滤波和三级管滤波对比

要点:

①该类信号属于OC输出,所以需要加上拉电阻(R4);

②阻容滤波(R2、C1)是低通滤波,信号频率应低于fc=1/2πRC;

③三极管导通时必须工作在饱和状态,通常基极电流Ib>1mA能保证三极管工作在饱和状态;

④三极管输出波形与输入波形反相,这点在程序里可以做取反处理。

五、三极管放大电路设计技巧

放大电路的核心元件是三极管,所以要对三极管要有一定的了解。用三极管构成的放大电路的种类较多,我们用常用的几种来解说一下(如图1)。图1是一共射的基本放大电路,一般我们对放大电路要掌握些什么内容?

  • 分析电路中各元件的作用;
  • 解放大电路的放大原理;
  • 能分析计算电路的静态工作点;
  • 理解静态工作点的设置目的和方法。

    以上四项中,最后一项较为重要。

共射的基本放大电路实例解析

图片

    图1中,C1、C2为耦合电容,耦合就是起信号的传递作用,电容器能将信号信号从前级耦合到后级,是因为电容两端的电压不能突变。在输入端输入交流信号后,因两端的电压不能突变,输出端的电压会跟随输入端输入的交流信号一起变化,从而将信号从输入端耦合到输出端。但有一点要说明的是,电容两端的电压不能突变,但不是不能变。
    R1、R2为三极管V1的直流偏置电阻。什么叫直流偏置?简单来说,做工要吃饭。要求三极管工作,必先要提供一定的工作条件,电子元件一定是要求有电能供应的了,否则就不叫电路了。
    在电路的工作要求中,第一条件是要求要稳定。所以,电源一定要是直流电源,所以叫直流偏置。为什么是通过电阻来供电?电阻就像是供水系统中的水龙头,用调节电流大小的。所以,三极管的三种工作 状态:“载止、饱和、放大”就由直流偏置决定。在图1中,也就是由R1、R2来决定了。
    首先,我们要知道如何判别三极管的三种工作状态。简单来说,判别工作于何种工作状态可以根据Uce的大小来判别,Uce接近于电源电压VCC。则三极管就工作于载止状态,载止状态就是说三极管基本上不工作,Ic电流较小(大约为零),所以R2由于没有电流流过,电压接近0V,所以Uce就接近于电源电压VCC。
    若Uce接近于0V,则三极管工作于饱和状态,何谓饱和状态?就是说:Ic电流达到了最大值,就算Ib增大,它也不能再增大了。
    以上两种状态我们一般称为开关状态。除这两种外,第三种状态就是放大状态,一般测Uce接近于电源电压的一半。若测Uce偏向VCC,则三极管趋向于载止状态,若测Uce偏向0V,则三极管趋向于饱和状态。

理解静态工作点的设置目的和方法

    放大电路:就是将输入信号放大后输出,(一般有电压放大,电流放大和功率放大几种,这个不在这讨论内)。先说我们要放大的信号,以正弦交流信号为例说。在分析过程中,可以只考虑到信号大小变化是有正有负,其它不说。上面提到在图1放大电路电路中,静态工作点的设置为Uce接近于电源电压的一半,为什么?

    这是为了使信号正负能有对称的变化空间,在没有信号输入的时候,即信号输入为0。假设Uce为电源电压的一半,我们当它为一水平线,作为一个参考点。当输入信号增大时,则Ib增大,Ic电流增大,则电阻R2的电压U2=Ic×R2会随之增大,Uce=VCC-U2会变小。U2最大理论上能达到等于VCC,则Uce最小会达到0V。这是说,在输入信增加时,Uce最大变化是从1/2的VCC变化到0V。
    同理,当输入信号减小时,则Ib减小,Ic电流减小。则电阻R2的电压U2=Ic×R2会随之减小,Uce=VCC-U2,会变大。在输入信减小时,Uce最大变化是从1/2的VCC变化到VCC。这样,在输入信号一定范围内发生正负变化时,Uce以1/2VCC为准的话就有一个对称的正负变化范围,所以一般图1静态工作点的设置为Uce接近于电源电压的一半。
    要把Uce设计成接近于电源电压的一半,这是我们的目的,但如何才能把Uce设计成接近于电源电压的一半?这就是看我们的手段了。
    这里要先知道几个东西,第一个是我们常说的Ic、Ib,它们是三极管的集电极电流和基极电流,它们有一个关系是Ic=β×Ib。但我们初学的时候,老师很明显的没有告诉我们,Ic、Ib是多大才合适?这个问题比较难答,因为牵涉的东西比较的多。但一般来说,对于小功率管,一般设Ic在零点几毫安到几毫安中功率管则在几毫安到几十毫安,大功率管则在几十毫安到几安。
    在图1中,设Ic为2mA,则电阻R2的阻值就可以由R=U/I来计算。VCC为12V,则1/2VCC为6V,R2的阻值为6V/2mA,为3KΩ。Ic设定为2毫安,则Ib可由Ib=Ic/β推出,关健是β的取值了。β一般理论取值100,则Ib=2mA/100=20#A,则R1=(VCC-0.7V)/Ib=11.3V/20#A=56.5KΩ。但实际上,小功率管的β值远不止100,在150到400之间,或者更高。所以若按上面计算来做,电路是有可能处于饱和状态的。

    所以有时我们不明白,计算没错,但实际不能用。这是因为还少了一点实际的指导,指出理论与实际的差别。这种电路受β值的影响大,每个人计算一样时,但做出来的结果不一定相同。也就是说,这种电路的稳定性差,实际应用较少。但如果改为图2的分压式偏置电路,电路的分析计算和实际电路测量较为接近。

图片

    在图2的分压式偏置电路中,同样的我们假设Ic为2mA,Uce设计成1/2VCC为6V。则R1、R2、R3、R4该如何取值呢。计算公式如下:因为Uce设计成1/2VCC为6V,则Ic×(R3+R4)=6V;Ic≈Ie。可以算出R3+R4=3KΩ,这样,R3、R4各是多少?
    一般R4取100Ω,R3为2.9KΩ,实际上R3我们一般直取2.7KΩ,因为E24系列电阻中没有2.9KΩ,取值2.7KΩ与2.9KΩ没什么大的区别。因为R2两端的电压等于Ube+UR4,即0.7V+100Ω×2mA=0.9V。

    我们设Ic为2mA,β一般理论取值100,则Ib=2mA/100=20#A,这里有一个电流要估算的,就是流过R1的电流了,一般取值为Ib的10倍左右,取IR1200#A。

    则R1=11.1V/200#A≈56KΩR2=0.9V(/200-20)#A=5KΩ

    考虑到实际上的β值可能远大于100,所以R2的实际取值为4.7KΩ。这样,R1、R2、R3、R4的取值分别为56KΩ、4.7KΩ、2.7KΩ、100Ω,Uce为6.4V。
    在上面的分析计算中,多次提出假设什么的,这在实际应用中是必要的,很多时候需要一个参考值来给我们计算。但往往却没有,这里面一是我们对各种器件不熟悉,二是忘记了一件事,我们自己才是用电路的人,一些数据可以自己设定,这样可以少走弯路。

六、三极管电路,这几个电阻不能省

  • 基极必须串接电阻,保护基极,保护CPU的IO口。
  • 基极根据PNP或者NPN管子加上拉电阻或者下拉电阻。
  • 集电极电阻阻值根据驱动电流实际情况调整。同样基极电阻也可以根据实际情况调整。

    基极和发射极需要串接电阻,该电阻的作用是在输入呈高阻态时使晶体管可靠截止,极小值是在前级驱动使晶体管饱和时与基极限流电阻分压后能够满足晶体管的临界饱和,实际选择时会大大高于这个极小值,通常外接干扰越小、负载越重准许的阻值就越大,通常采用10K量级。

    防止三极管受噪声信号的影响而产生误动作,使晶体管截止更可靠!三极管的基极不能出现悬空,当输入信号不确定时(如输入信号为高阻态时),加下拉电阻,就能使有效接地。

    特别是GPIO连接此基极的时候,一般在GPIO所在IC刚刚上电初始化的时候,此GPIO的内部也处于一种上电状态,很不稳定,容易产生噪声,引起误动作!加此电阻,可消除此影响(如果出现一尖脉冲电平,由于时间比较短,所以这个电压很容易被电阻拉低;如果高电平的时间比较长,那就不能拉低了,也就是正常高电平时没有影响)!

    但是电阻不能过小,影响泄漏电流!过小则会有较大的电流由电阻流入地。

    当三极管开关作用时,ON和OFF时间越短越好,为了防止在OFF时,因晶体管中的残留电荷引起的时间滞后,在B,E之间加一个R起到放电作用。

七、活用三极管、电感、电阻,制作焦耳小偷电路

 当然这里的“焦耳小偷”不是真正意义上的小偷,实际上这是一个升压电路。

    此电路有个特点:低电压时也可以正常使用,将本来用不到的能量提取出来,彻底榨干电源的所有能量,获取额外能量的电路。

    下面图片列举了3种发烧友DIY的焦耳小偷电路。

图片

图片

图片

    焦耳小偷电路是一个简约的自激振荡升压电路。

    一个简单的焦耳小偷电路可用三极管、电阻和电感线圈组成焦耳小偷。

    分析这个电路:

    一般来说根据能量守恒定律,而因为电路的电源能量转化会存在着各种的损耗,而电源中内的小量的能量,会因为内阻变大,输出电流减弱,已经无法驱动一般的电路,所以电源中的能量利用率最多也只能达到75%左右,焦耳小偷运行原理是借助电感线圈的电感的属性提升高频高压的脉冲电压,通常可以将电压为1.5V~0.5V升到3V~5V,一般能量利用率可以达到80%左右,能量的损耗也就没有多少了。

图片

    下文对这个对焦耳小偷电路的解析通俗易懂。

    要点亮一个LED,我们知道通常LED工作电压在1.7~3V,也就是说,要点亮LED我们需要一个高于1.7V的电压。

    那么最简单点亮LED的办法就是如下图:

图片

    二个电池叠加电压高于1.7V就能点亮LED。这是一个极简单的工作。

    现在我们来看下图:

图片

    在这里,我们将一个电感替代了一个电池,加了一个开关。这时LED是无法点亮的,因为其电压只有一个电池供电为1.5V。

    当我们按下开关时,电池仅向电感供电,电流在电感上形成磁场。这一过程我们且称之为电池对电感冲能。

    放开开关时,由电池叠加电感上的电压对LED放电,这是电压就高于1.7V,因而点亮LED。

    在这里电感充当了一个电池的作用,和普通电池不同的是,电感的能量是依赖电池。

需要电池不断给电感充电,然后再对外释放。

    我们不可能一直不断的按动那个开关,另外让依赖我们手动,其工作频率也很低。

那么LED一闪就灭,甚至很难被我们观察到LED在闪亮。

    这时我们就采取了一个三极管作为自动开关,来替代我们手动的开关。

    电路边演化为:

图片

    现在我们只要给三极管基极一个信号,就能控制三极管导通还是截至。

    只需周期性的给基极信号,那么三极管就充任了自动开关的角色。

    能完成将电池负载不断的从电感和LED之间转换。

    当电感成为负载时,电池对电感冲能,(三极管导通状态),当LED成为负载时,(三极管截至)电感释放能量。

    再看下图:

图片

    这里我们再加上一组反馈线圈,以便向三极管提供触发信号。

    当电感冲能时电感上存在电流,那么感应线圈就能为三极管提供触发信号,使得三极管导通。

    当电感冲能完毕,在电感上形成磁场,同时也产生一个感应电动势。该电动势会阻止电流在电感上流过。

    这是感应线圈上缺乏足够感应电流,无法维持三极管导通,此时三极管截至。

    就着样,三极管配合电感形成导通-截至-导通-截至不断循环。

    就相当于以上说明中那个开关,不断通断。

    那么最后,我们还得为三极管加上保护,以避免三极管基极被击穿。这样就形成了焦耳小偷的电路:

图片

    现在我们应该明白焦耳小偷的一般性常识了,由此也知道在制作焦耳小偷时各个元件都担任什么作用。

    那么也明白只要是三极管,都能用于制作焦耳小偷,只要这个三极管还存在截至能导通的能力。

    放大倍数,工作频率这些都能忽略。

    只要能提供信号能维持三极管进行导通和截至的工作,即便是可控硅,达林顿复合管之类也能胜任。

    这里需要注意的是:

  • 焦耳小偷产生提供的是脉冲直电流,不是交变电流;
  • 电感线圈的匝数越少,电压就越小;线径就越大,电流越大;
  • 输出电压的增加是以更高的输入电流的损失为代价的;
  • 过放的电源容易损坏;
  • 万能表不能测焦耳小偷的电压,需加高频整流电路否则不准;
  • 升压效率和稳定性比较差;

八、三极管电路必懂的几种分析方法

 三极管有静态和动态两种工作状态。未加信号时三极管的直流工作状态称为静态,此时各极电流称为静态电流,给三极管加入交流信号之后的工作电流称为动态工作电流,这时三极管是交流工作状态,即动态。

    一个完整的三极管电路分析有四步:直流电路分析、交流电路分析、元器件和修理识图。

直流电路分析方法

    直流工作电压加到三极管各个电极上主要通过两条直流电路:一是三极管集电极与发射极之间的直流电路,二是基极直流电路。

    通过这一步分析可以搞清楚直流工作电压是如何加到集电极、基极和发射极上的。如图所示,是放大器直流电路分析示意图。对于一个单级放大器而言,其直流电路分析主要是图中所示的三个部分。

图片

    分析三极管直流电路时,由于电路中的电容具有隔直流特性,所以可以将它们看成开路,这样上图所示电路就可以画成如下图所示的直流等效电路,再用这一等效电路进行直流电路分析就相当简洁了。

图片

交流电路分析方法

    交流电路分析主要是交流信号的传输路线分析,即信号从哪里输入到放大器中,信号在这级放大器中具体经过了哪些元器件,信号最终从哪里输出。如图所示,是交流信号传输路线分析示意图。

图片

    另外还要分析信号在传输过程中受到了哪些处理,如信号在哪个环节放大,在哪个环节受到衰减,哪个环节不放大也不衰减,信号是否受到了补偿等。

    上图电路中的信号经过了C1、VT1、C2、VT2和C3,其中C1、C2和C3是耦合电容,对信号没有放大和衰减作用,只是起着将信号传输到下级电路中的耦合作用,VT1和VT2对信号起了放大作用。

元器件作用分析方法

1 元器件特性是电路分析关键

    分析电路中元器件的作用时,应依据该元器件的主要特性来进行。例如,耦合电容让交流信号无损耗的通过,而同时隔断直流通路,这一分析的理论根据是电容隔直通交特性。

2 元器件在电路中具体作用

    电路中的每个元器件都有它的特定作用,通常一个元器件起一种特定的作用,当然也有一个元器件在电路中起两个作用的。在电路分析中要求搞懂每一个元器件在电路中的具体作用。

3 元器件简化分析方法

    对元器件作用的分析可以进行简化,掌握了元器件在电路中的作用后,不必每次对各个元器件都进行详细分析。例如,掌握耦合电容的作用之后,不必对每一个耦合电容都进行分析。如图所示,是耦合电容分析示意图。

图片

修理识图方法

    修理识图为检修电路故障服务,这一识图要求在完全搞懂电路工作原理之后进行,否则没有意义。因为故障现象明确,因此故障检修过程中的修理识图可以有针对性的选择电路中的元器件进行,而不需要对电路中的每个元器件都进行故障分析。

    分析时,找出电路中的主要元器件,并分别假设它们出现开路、短路、阻值变大和变小等故障,分析这种故障对直流电路和交流电路的影响,从而推理出可能的故障根源。

    修理识图的关键是找出电路中关键测试点:

1 单级放大器关键测试点

    如图所示,单级放大器主要是三极管的关键测试点。

图片

    三极管的关键测试点用来测量三个电极的直流工作电压,其中集电极是第一测试点,其次是基极,第三是发射极。三极管放大实例电路,请移步此文:​​自制简易断点检测电路​​。

2 集成电路关键测试点

    集成电路关键测试点最重要的是电源引脚,还有输入信号引脚和输出信号引脚。

三极管基极偏置电路分析方法

    三极管基极偏置电路分析最为困难,掌握一些电路分析方法可以方便基极偏置电路的分析。

    第一步是在电路中找出三极管的电路符号,如图所示,然后在三极管电路符号中后找出基极,这是分析基极偏置电路的关键一步。

    第二步从基极出发,将与基极和电源端相连的所有元器件找出来,如图所示,电路中的RB1,再将基极与地端相连的所有元器件找出来,如电路中的RB2,这些元器件构成基极偏置电路的主体电路。

图片

    上述与基极相连的元器件中,要区别哪些元器件可能是偏置电路中的元器件。电阻器有可能构成偏置电路,电容器具有隔直作用而视为开路,所以在分析基极直流偏置电路时,不必考虑电容器。

    第三步确定偏置电路中的元器件后,进行基极电流回路的分析,如图所示。基极电流回路是:直流工作电压VCC→偏置电阻RB1→VT1基极→VT1发射极→VT1发射极电阻RE→地端

九、温度过高导致产品崩了,三极管的锅

当自己设计完的电路板通过了功能测试、性能测试、环境实验后,以为这样就万事大吉了?但是你永远也想象不到用户会把产品用在什么地方,本文介绍高温环境影响三极管性能,进而导致产品失灵的案例。

案例始末

发现问题

    具体是这样的一个很简单的串口RS485电路,具体电路如下图所示,用了这个电路后就不要单独信号去管理485芯片的收发分时了,是不是很方便。

图片

    问题就是出现这这个电路上。

    开发完电路之后,测试时做环境实验在55度做的,一点点问题都木有,该收收该发发。

    但是一到了用户哪里工作一小会就挂了。

    现场排查,发现用户把产品放在一个发热量巨大的发动机旁边。实际测了一下周围环境温度都48度以上。

    为了防尘,我的板卡和一个发热巨大的主控放在一个盒子里面,而且还没有风扇,这就导致盒子里面的温度到了70多度,你们是要搞烧烤吗?

    暂时我也不知道问题所在,就灵机一动就对身后的嵌入式软件小哥说,是不是你软件配置有问题,人家ARM高温了会降频,你是不是没有配置好,导致收发有问题的。小哥委屈说“没有啥特殊的啊,我都快把手册翻烂了也没有看到啊”。我首先表达对其深深的同情,然后说“哥回去帮你好好想哪里出问题了”。

    回到公司后,我就用热风枪使劲对着ARM芯片吹,结果毛事没有,好家伙,锅是甩不掉了,剩下的电路一步一步的吹把,当吹到三极管时(上面电路图中的Q4),没得数据了,看来是三极管的事情,可是祸不单行啊,不吹后当温度降下来了也没得数据了,难道吹坏了?仔细一瞅,原来把电阻给吹掉了。

    焊上电阻后调小风量,加大热度继续吹,又没数据了,那就把目标锁定在三极管。

分析原因

    接下来,测波形吧。

    分别测量上图中所标识的1、2、3点,其中电路设计中用的限流电阻为1K,三级管为9013。首先测量在常温下三个测试点的波形吧,第一点波形为隔离芯片ADuM1201输出引脚,其波形如下图所示,输出电压幅值为5V。

图片

    第二点波形为9013三级管基极控制电压,其波形如下图所示,输出电压峰值约为700mV,波动范围约为200mV,即当电平为0.7V时三极管导通,当电平为0.5V时三级管关断。

图片

    第三点波形为9013三级管集电极极电压,其波形如下图所示,输出电压幅值约为5V。

图片

    然后本人吹风小能手上线,对着就是一顿蒙吹,另一个手还要测波形,幸好没有烫出泡(不然就算工伤)从新测量了上述三个测量点,第一点的波形如下图所示,波形和加热前波形基本一致,所以即加热并不会改变ADuM1201隔离芯片的输出电压特性。

图片

   那么继续测量第二点吧,当继续加热到温度约为55度时第二点波形如下图所示,其电压的波动范围变小约为100mV即高电平减小到0.6V,但是低电平还是约为0.5V,随着温度的继续升高当温度到65度时第二点电压基本保持在0.5V,且三极管保持导通状态,因此RS485无法实现数据的发送。

图片

  好了,第三点上线,当加热到温度约为55度时第三点波形如下图所示,随着温度的升高第三点出电压保持为低电平,RS485电路为接受状态。

图片

 我K这不是坑我吗,让我来瞅瞅这三极管的特性吧(谁让我上学的时候没有好好学习呢),三级管的物理结构为两个PN结,其Ube电压特性如下图所示,其开启电压约为0.7V,而且基极与发射电压特性与二极管特性相同。右下图可以知道随着温度的升高,Ube的特性曲线整体右移,因此三级管的导通压降降低,使得控制MAX485芯片的RE引脚一直处于低电平,所以无法发送数据。

图片

     既然知道温度对三极管的影响了,那我改呗,由上面的分析可以知道,最终三极管基极钳位到0.5V是因为5V上拉10K电阻与1K限流电阻分压后将三极管基极钳位到0.5V。将限流电阻R65改为0R后波形如下图所示,可以看出电压波形在0V到0.7V之间波动。

图片

     改为0R限流电阻后,继续加热RS485电路,波形如下图所示,可以看出波形无明显变化,且串口可以正常发送数据。但由于三极管的基极将ADuM1201发送引脚强制拉倒0.7V,增大了ADuM1201的输出电流,长期运行时会对器件寿命有严重影响,不改彻底了不是我的性格。

图片

解决问题

    根据三级管的温度特性,导致了在高温运行下基极门限电压降低,若只是将ADuM1201输出限流电阻减小会造成器件寿命减少影响产品质量,因此现将三极管9013改为MOS管GMS2302,由于MOS管为压控型器件其本身不会消耗太多功耗。

    MOS管GMS2302常温下栅极电压波形如下图所示,可以看出波形范围为0V到5V。

图片

    MOS管GMS2302温度约为80下栅极电压波形如下图所示,其电压波形无变化且串口可以正常发送数据。

图片

    所以呢,在设计中我要有刨根问底(躲坑)的精神,把问题彻底解决了,这个案例是我亲生经历的一个案件,虽然不大但是很够借鉴意义------得出的结论就就是:可以指导我们在以后硬件设计过程中若作为开关使用最好选择MOS管,且合理选择限流电阻。

其他解决方式

    温度对PN结有影响,实际上案例如果驱动是推挽输出,电路图中的R56去掉应该也行,这样就不必换成MOS管了。

    另外还可以把这电阻改用作下拉呢。

    再者,还可以把R56改成驱动输出的上拉,也可以试试。

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.coloradmin.cn/o/2323759.html

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈,一经查实,立即删除!

相关文章

SQL中累计求和与滑动求和函数sum() over()的用法

[TOC](SQL中累计求和与滑动求和函数sum() over()的用法) 一、窗口函数功能简介 sum(c) over(partition by a order by b) 按照一定规则汇总c的值,具体规则为以a分组,每组内按照b进行排序,汇总第一行至当前行的c的加和值。 sum()&#xff1a…

【Sql Server】在SQL Server中生成雪花ID(Snowflake ID)

大家好,我是全栈小5,欢迎来到《小5讲堂》。 这是《Sql Server》系列文章,每篇文章将以博主理解的角度展开讲解。 温馨提示:博主能力有限,理解水平有限,若有不对之处望指正! 目录 前言认识雪花ID…

FPGA——分秒计数器设计(DE2-115开发板)

一、项目创建 1.创建工程 点击File->New Project Wizard...或者直接在页面处点击 在第一行选择文件存放地点,第二行为项目名称,第三行为顶级设计实体名称 (下面的步骤可以暂时不做直接点Finish,因为是先写代码先把它跑出来暂…

雅思练习总结(九)

雅思练习总结(九) 本文章是雅思练习总结(九),总结了文章《BAKELITE》,内容包括原文精翻,文章脉络总结,单词扩展学习3个部分 1 文章原文及翻译 BAKELITE 翻译:贝克莱特…

windows USB 了解

GUID GUID 是一个 128 位的数字,在全球范围内是独一无二的,常被用于标识软件组件、设备接口等,以保证在不同系统和环境中能唯一识别特定对象。 DEFINE_GUID(GUID_DEVINTERFACE_USCUSTOMKEYS, 0x12345678, 0x1234, 0x5678, 0x12, 0x12, 0x23…

光谱相机的光谱信息获取

光谱信息的获取方式主要依赖于不同分光技术和成像方法,将入射光分解为不同波长并记录其强度。以下是常见的光谱信息获取技术分类及原理: ‌1. 分光技术(物理分解波长)‌ ‌(1) 滤光片法‌ ‌原理‌:使用固定或可调滤…

免去繁琐的手动埋点,Gin 框架可观测性最佳实践

作者:牧思 背景 在云原生时代的今天,Golang 编程语言越来越成为开发者们的首选,而对于 Golang 开发者来说,最著名的 Golang Web 框架莫过于 Gin [ 1] 框架了,Gin 框架作为 Golang 编程语言官方的推荐框架 [ 2] &…

构建大语言模型应用:简介(第一部分)

本专栏聚焦大语言模型(LLM)相关内容的解析,通过检索增强生成(RAG)应用的视角来进行。 本系列文章 简介(本文)数据准备句子转换器向量数据库搜索与检索大语言模型开源检索增强生成评估大语言模…

PEmicro Multilink FX调试踩坑

文章目录 1.背景2 功能说明2.1 实时数据查看功能2.1 电压观测2.2 SWO功能 3 设置与支持 1.背景 既然使用了NXP的芯片,笔者就想使用一下它的专用调试器,这里先说一下,笔者是从朋友那里借了一个调试器,型号为PEmicro Multilink FX …

主流大模型采用的架构、注意力机制、位置编码等汇总表

记录下主流大模型的一些核心知识点,包括: 架构注意力机制位置编码归一化激活函数模型参数 表中的一些模型已经是很久之前的了,比如表中并未收入 DeepSeek V3 中使用的MLA的注意力机制。先占个位,后续如果有更新的汇总表再来更…

SpringBoot学习笔记3.27

目录 实战篇第二课 1.注册参数的校验: 学习过程中遇到的问题: 1.什么是正则表达式 2.怎么自定义异常? 1. 创建全局异常处理类 2. 定义响应对象 3. 使用 ExceptionHandler 4. 设置响应状态码 5. 返回统一响应 6. 测试全局异常处理 …

2025NCTF--Web

文章目录 Websqlmap-masterez_dashez_dash_revenge Web sqlmap-master 源码 from fastapi import FastAPI, Request from fastapi.responses import FileResponse, StreamingResponse import subprocessapp FastAPI()app.get("/") async def index():return File…

如何破解软件自动化测试框架的维护难题

破解软件自动化测试框架的维护难题应从优化测试用例设计、加强脚本的模块化与复用性、提高自动化测试工具的选择与使用效率等方面入手。其中,加强脚本的模块化与复用性尤为关键,通过提高脚本的模块化程度,可以显著降低后续维护成本&#xff0…

外星人入侵(python设计小游戏)

这个游戏简而言之就是操作一个飞机对前方的飞船进行射击,和一款很久之前的游戏很像,这里是超级低配版那个游戏,先来看看效果图: 由于设计的是全屏的,所以电脑不能截图。。。。 下面的就是你操控的飞船,上面…

iOS rootless无根越狱检测方案

不同于安卓的开源生态,iOS一直秉承着安全性更高的闭源生态,系统中的硬件、软件和服务会经过严格审核和测试,来保障安全性与稳定性。 据FairGurd观察,虽然iOS系统具备一定的安全性,但并非没有漏洞,如市面上…

LLM 优化技术(1)——Scaled-Dot-Product-Attention(SDPA)

在 Transformer 中抛弃了传统的 CNN 和 RNN,整个网络结构完全由Scaled Dot Product Attention 和Feed Forward Neural Network组成。一个基于 Transformer 的可训练的神经网络可以通过堆叠 Transformer 的形式进行搭建,Attention is All You Need论文中通…

基于音频驱动的CATIA动态曲面生成技术解析

一、技术背景与创新价值 在工业设计领域,参数化建模与动态仿真的结合一直是研究热点。本文提出的音频驱动建模技术突破了传统参数调整方式,实现了音乐节奏与三维曲面的实时动态交互。该技术可广泛应用于以下场景: ​艺术化产品设计&#xf…

5-管理员-维护权限

在“后台”-“人员管理”-“权限”下,通过不同的操作按钮,按照权限分组对权限进行设置。操作部分的按钮依次为 视野维护:设置该分组可以查看、访问的视图。权限维护:设置分组成员可以操作的具体动作等所有在禅道中涉及的权限。成…

全新升级 | Built For You Spring ‘25 发布,Fin 智能客服实现新突破!

图像识别、语音交互、任务自动化,立即体验智能客服蜕变! 上周,Intercom 举办了 Built For You Spring 25 发布会,正式揭晓了 AI Agent Fin 的一系列令人振奋的更新。Fin 正在以前所未有的速度革新客户支持模式——它已经成功解决了…

LeeCode 434. 字符串中的单词数

统计字符串中的单词个数,这里的单词指的是连续的不是空格的字符。 请注意,你可以假定字符串里不包括任何不可打印的字符。 示例: 输入: "Hello, my name is John" 输出: 5 解释: 这里的单词是指连续的不是空格的字符,所以 "…