YOLOv8改进------------SPFF-LSKA

news2025/3/6 9:05:48

YOLOv8改进------------SPFF-LSKA

    • 1、LSAK.py代码
    • 2、添加YAML文件yolov8_SPPF_LSKA.yaml
    • 3、添加SPPF_LSKA代码
    • 4、ultralytics/nn/modules/__init__.py注册模块
    • 5、ultralytics/nn/tasks.py注册模块
    • 6、导入yaml文件训练

1、LSAK.py代码

论文
代码

LSKA.py添加到ultralytics/nn/modules
在这里插入图片描述

import torch
import torch.nn as nn
import torch.nn.functional as F
from functools import partial
 
from timm.models.layers import DropPath, to_2tuple, trunc_normal_
from timm.models.registry import register_model
from timm.models.vision_transformer import _cfg
import math
 
class Mlp(nn.Module):
    def __init__(self, in_features, hidden_features=None, out_features=None, act_layer=nn.GELU, drop=0.):
        super().__init__()
        out_features = out_features or in_features
        hidden_features = hidden_features or in_features
        self.fc1 = nn.Conv2d(in_features, hidden_features, 1)
        self.dwconv = DWConv(hidden_features)
        self.act = act_layer()
        self.fc2 = nn.Conv2d(hidden_features, out_features, 1)
        self.drop = nn.Dropout(drop)
        self.apply(self._init_weights)
 
    def _init_weights(self, m):
        if isinstance(m, nn.Linear):
            trunc_normal_(m.weight, std=.02)
            if isinstance(m, nn.Linear) and m.bias is not None:
                nn.init.constant_(m.bias, 0)
        elif isinstance(m, nn.LayerNorm):
            nn.init.constant_(m.bias, 0)
            nn.init.constant_(m.weight, 1.0)
        elif isinstance(m, nn.Conv2d):
            fan_out = m.kernel_size[0] * m.kernel_size[1] * m.out_channels
            fan_out //= m.groups
            m.weight.data.normal_(0, math.sqrt(2.0 / fan_out))
            if m.bias is not None:
                m.bias.data.zero_()
 
    def forward(self, x):
        x = self.fc1(x)
        x = self.dwconv(x)
        x = self.act(x)
        x = self.drop(x)
        x = self.fc2(x)
        x = self.drop(x)
        return x
 
 
 
 
class LSKA(nn.Module):
    def __init__(self, dim, k_size):
        super().__init__()
 
        self.k_size = k_size
 
        if k_size == 7:
            self.conv0h = nn.Conv2d(dim, dim, kernel_size=(1, 3), stride=(1,1), padding=(0,(3-1)//2), groups=dim)
            self.conv0v = nn.Conv2d(dim, dim, kernel_size=(3, 1), stride=(1,1), padding=((3-1)//2,0), groups=dim)
            self.conv_spatial_h = nn.Conv2d(dim, dim, kernel_size=(1, 3), stride=(1,1), padding=(0,2), groups=dim, dilation=2)
            self.conv_spatial_v = nn.Conv2d(dim, dim, kernel_size=(3, 1), stride=(1,1), padding=(2,0), groups=dim, dilation=2)
        elif k_size == 11:
            self.conv0h = nn.Conv2d(dim, dim, kernel_size=(1, 3), stride=(1,1), padding=(0,(3-1)//2), groups=dim)
            self.conv0v = nn.Conv2d(dim, dim, kernel_size=(3, 1), stride=(1,1), padding=((3-1)//2,0), groups=dim)
            self.conv_spatial_h = nn.Conv2d(dim, dim, kernel_size=(1, 5), stride=(1,1), padding=(0,4), groups=dim, dilation=2)
            self.conv_spatial_v = nn.Conv2d(dim, dim, kernel_size=(5, 1), stride=(1,1), padding=(4,0), groups=dim, dilation=2)
        elif k_size == 23:
            self.conv0h = nn.Conv2d(dim, dim, kernel_size=(1, 5), stride=(1,1), padding=(0,(5-1)//2), groups=dim)
            self.conv0v = nn.Conv2d(dim, dim, kernel_size=(5, 1), stride=(1,1), padding=((5-1)//2,0), groups=dim)
            self.conv_spatial_h = nn.Conv2d(dim, dim, kernel_size=(1, 7), stride=(1,1), padding=(0,9), groups=dim, dilation=3)
            self.conv_spatial_v = nn.Conv2d(dim, dim, kernel_size=(7, 1), stride=(1,1), padding=(9,0), groups=dim, dilation=3)
        elif k_size == 35:
            self.conv0h = nn.Conv2d(dim, dim, kernel_size=(1, 5), stride=(1,1), padding=(0,(5-1)//2), groups=dim)
            self.conv0v = nn.Conv2d(dim, dim, kernel_size=(5, 1), stride=(1,1), padding=((5-1)//2,0), groups=dim)
            self.conv_spatial_h = nn.Conv2d(dim, dim, kernel_size=(1, 11), stride=(1,1), padding=(0,15), groups=dim, dilation=3)
            self.conv_spatial_v = nn.Conv2d(dim, dim, kernel_size=(11, 1), stride=(1,1), padding=(15,0), groups=dim, dilation=3)
        elif k_size == 41:
            self.conv0h = nn.Conv2d(dim, dim, kernel_size=(1, 5), stride=(1,1), padding=(0,(5-1)//2), groups=dim)
            self.conv0v = nn.Conv2d(dim, dim, kernel_size=(5, 1), stride=(1,1), padding=((5-1)//2,0), groups=dim)
            self.conv_spatial_h = nn.Conv2d(dim, dim, kernel_size=(1, 13), stride=(1,1), padding=(0,18), groups=dim, dilation=3)
            self.conv_spatial_v = nn.Conv2d(dim, dim, kernel_size=(13, 1), stride=(1,1), padding=(18,0), groups=dim, dilation=3)
        elif k_size == 53:
            self.conv0h = nn.Conv2d(dim, dim, kernel_size=(1, 5), stride=(1,1), padding=(0,(5-1)//2), groups=dim)
            self.conv0v = nn.Conv2d(dim, dim, kernel_size=(5, 1), stride=(1,1), padding=((5-1)//2,0), groups=dim)
            self.conv_spatial_h = nn.Conv2d(dim, dim, kernel_size=(1, 17), stride=(1,1), padding=(0,24), groups=dim, dilation=3)
            self.conv_spatial_v = nn.Conv2d(dim, dim, kernel_size=(17, 1), stride=(1,1), padding=(24,0), groups=dim, dilation=3)
 
        self.conv1 = nn.Conv2d(dim, dim, 1)
 
 
    def forward(self, x):
        u = x.clone()
        attn = self.conv0h(x)
        attn = self.conv0v(attn)
        attn = self.conv_spatial_h(attn)
        attn = self.conv_spatial_v(attn)
        attn = self.conv1(attn)
        return u * attn
 
 
class Attention(nn.Module):
    def __init__(self, d_model, k_size):
        super().__init__()
 
        self.proj_1 = nn.Conv2d(d_model, d_model, 1)
        self.activation = nn.GELU()
        self.spatial_gating_unit = LSKA(d_model, k_size)
        self.proj_2 = nn.Conv2d(d_model, d_model, 1)
 
    def forward(self, x):
        shorcut = x.clone()
        x = self.proj_1(x)
        x = self.activation(x)
        x = self.spatial_gating_unit(x)
        x = self.proj_2(x)
        x = x + shorcut
        return x
 
 
class Block(nn.Module):
    def __init__(self, dim, k_size, mlp_ratio=4., drop=0.,drop_path=0., act_layer=nn.GELU):
        super().__init__()
        self.norm1 = nn.BatchNorm2d(dim)
        self.attn = Attention(dim, k_size)
        self.drop_path = DropPath(drop_path) if drop_path > 0. else nn.Identity()
 
        self.norm2 = nn.BatchNorm2d(dim)
        mlp_hidden_dim = int(dim * mlp_ratio)
        self.mlp = Mlp(in_features=dim, hidden_features=mlp_hidden_dim, act_layer=act_layer, drop=drop)
        layer_scale_init_value = 1e-2
        self.layer_scale_1 = nn.Parameter(
            layer_scale_init_value * torch.ones((dim)), requires_grad=True)
        self.layer_scale_2 = nn.Parameter(
            layer_scale_init_value * torch.ones((dim)), requires_grad=True)
 
        self.apply(self._init_weights)
 
    def _init_weights(self, m):
        if isinstance(m, nn.Linear):
            trunc_normal_(m.weight, std=.02)
            if isinstance(m, nn.Linear) and m.bias is not None:
                nn.init.constant_(m.bias, 0)
        elif isinstance(m, nn.LayerNorm):
            nn.init.constant_(m.bias, 0)
            nn.init.constant_(m.weight, 1.0)
        elif isinstance(m, nn.Conv2d):
            fan_out = m.kernel_size[0] * m.kernel_size[1] * m.out_channels
            fan_out //= m.groups
            m.weight.data.normal_(0, math.sqrt(2.0 / fan_out))
            if m.bias is not None:
                m.bias.data.zero_()
 
    def forward(self, x):
        x = x + self.drop_path(self.layer_scale_1.unsqueeze(-1).unsqueeze(-1) * self.attn(self.norm1(x)))
        x = x + self.drop_path(self.layer_scale_2.unsqueeze(-1).unsqueeze(-1) * self.mlp(self.norm2(x)))
        return x
 
 
class OverlapPatchEmbed(nn.Module):
    """ Image to Patch Embedding
    """
 
    def __init__(self, img_size=224, patch_size=7, stride=4, in_chans=3, embed_dim=768):
        super().__init__()
        patch_size = to_2tuple(patch_size)
        self.proj = nn.Conv2d(in_chans, embed_dim, kernel_size=patch_size, stride=stride,
                              padding=(patch_size[0] // 2, patch_size[1] // 2))
        self.norm = nn.BatchNorm2d(embed_dim)
 
        self.apply(self._init_weights)
 
    def _init_weights(self, m):
        if isinstance(m, nn.Linear):
            trunc_normal_(m.weight, std=.02)
            if isinstance(m, nn.Linear) and m.bias is not None:
                nn.init.constant_(m.bias, 0)
        elif isinstance(m, nn.LayerNorm):
            nn.init.constant_(m.bias, 0)
            nn.init.constant_(m.weight, 1.0)
        elif isinstance(m, nn.Conv2d):
            fan_out = m.kernel_size[0] * m.kernel_size[1] * m.out_channels
            fan_out //= m.groups
            m.weight.data.normal_(0, math.sqrt(2.0 / fan_out))
            if m.bias is not None:
                m.bias.data.zero_()
 
    def forward(self, x):
        x = self.proj(x)
        _, _, H, W = x.shape
        x = self.norm(x)
        return x, H, W
 
 
class VAN(nn.Module):
    def __init__(self, img_size=224, in_chans=3, num_classes=1000, embed_dims=[64, 128, 256, 512],
                mlp_ratios=[4, 4, 4, 4], drop_rate=0., drop_path_rate=0., norm_layer=nn.LayerNorm,
                 depths=[3, 4, 6, 3], num_stages=4, flag=False, k_size=7, pretrained_cfg=None):
        super().__init__()
        if flag == False:
            self.num_classes = num_classes
        self.depths = depths
        self.num_stages = num_stages
 
        dpr = [x.item() for x in torch.linspace(0, drop_path_rate, sum(depths))]  # stochastic depth decay rule
        cur = 0
 
        for i in range(num_stages):
            patch_embed = OverlapPatchEmbed(img_size=img_size if i == 0 else img_size // (2 ** (i + 1)),
                                            patch_size=7 if i == 0 else 3,
                                            stride=4 if i == 0 else 2,
                                            in_chans=in_chans if i == 0 else embed_dims[i - 1],
                                            embed_dim=embed_dims[i])
 
            block = nn.ModuleList([Block(
                dim=embed_dims[i], k_size=k_size, mlp_ratio=mlp_ratios[i], drop=drop_rate, drop_path=dpr[cur + j])
                for j in range(depths[i])])
            norm = norm_layer(embed_dims[i])
            cur += depths[i]
 
            setattr(self, f"patch_embed{i + 1}", patch_embed)
            setattr(self, f"block{i + 1}", block)
            setattr(self, f"norm{i + 1}", norm)
 
        # classification head
        self.head = nn.Linear(embed_dims[3], num_classes) if num_classes > 0 else nn.Identity()
 
        self.apply(self._init_weights)
 
    def _init_weights(self, m):
        if isinstance(m, nn.Linear):
            trunc_normal_(m.weight, std=.02)
            if isinstance(m, nn.Linear) and m.bias is not None:
                nn.init.constant_(m.bias, 0)
        elif isinstance(m, nn.LayerNorm):
            nn.init.constant_(m.bias, 0)
            nn.init.constant_(m.weight, 1.0)
        elif isinstance(m, nn.Conv2d):
            fan_out = m.kernel_size[0] * m.kernel_size[1] * m.out_channels
            fan_out //= m.groups
            m.weight.data.normal_(0, math.sqrt(2.0 / fan_out))
            if m.bias is not None:
                m.bias.data.zero_()
 
    def freeze_patch_emb(self):
        self.patch_embed1.requires_grad = False
 
    @torch.jit.ignore
    def no_weight_decay(self):
        return {'pos_embed1', 'pos_embed2', 'pos_embed3', 'pos_embed4', 'cls_token'}  # has pos_embed may be better
 
    def get_classifier(self):
        return self.head
 
    def reset_classifier(self, num_classes, global_pool=''):
        self.num_classes = num_classes
        self.head = nn.Linear(self.embed_dim, num_classes) if num_classes > 0 else nn.Identity()
 
    def forward_features(self, x):
        B = x.shape[0]
 
        for i in range(self.num_stages):
            patch_embed = getattr(self, f"patch_embed{i + 1}")
            block = getattr(self, f"block{i + 1}")
            norm = getattr(self, f"norm{i + 1}")
            x, H, W = patch_embed(x)
            for blk in block:
                x = blk(x)
            x = x.flatten(2).transpose(1, 2)
            x = norm(x)
            if i == self.num_stages - 1:
                x_feature_map = x.reshape(B, H, W, -1).permute(0, 3, 1, 2).contiguous()
            if i != self.num_stages - 1:
                x = x.reshape(B, H, W, -1).permute(0, 3, 1, 2).contiguous()
        return x_feature_map, x.mean(dim=1)
 
    def forward(self, x):
        _, x = self.forward_features(x)
        x = self.head(x)
 
        return x
 
 
class DWConv(nn.Module):
    def __init__(self, dim=768):
        super(DWConv, self).__init__()
        self.dwconv = nn.Conv2d(dim, dim, 3, 1, 1, bias=True, groups=dim)
 
    def forward(self, x):
        x = self.dwconv(x)
        return x
 
 
def _conv_filter(state_dict, patch_size=16):
    """ convert patch embedding weight from manual patchify + linear proj to conv"""
    out_dict = {}
    for k, v in state_dict.items():
        if 'patch_embed.proj.weight' in k:
            v = v.reshape((v.shape[0], 3, patch_size, patch_size))
        out_dict[k] = v
 
    return out_dict
 
 
model_urls = {
    "van_tiny": "https://huggingface.co/Visual-Attention-Network/VAN-Tiny-original/resolve/main/van_tiny_754.pth.tar",
    "van_small": "https://huggingface.co/Visual-Attention-Network/VAN-Small-original/resolve/main/van_small_811.pth.tar",
    "van_base": "https://huggingface.co/Visual-Attention-Network/VAN-Base-original/resolve/main/van_base_828.pth.tar",
    "van_large": "https://huggingface.co/Visual-Attention-Network/VAN-Large-original/resolve/main/van_large_839.pth.tar",
}
 
 
def load_model_weights(model, arch, kwargs):
    url = model_urls[arch]
    checkpoint = torch.hub.load_state_dict_from_url(
        url=url, map_location="cpu", check_hash=True
    )
    strict = True
    if "num_classes" in kwargs and kwargs["num_classes"] != 1000:
        strict = False
        del checkpoint["state_dict"]["head.weight"]
        del checkpoint["state_dict"]["head.bias"]
    print('load model weights....')
    model.load_state_dict(checkpoint["state_dict"], strict=strict)
    return model
 
 
@register_model
def van_tiny(pretrained=False, **kwargs):
    model = VAN(
        embed_dims=[32, 64, 160, 256], mlp_ratios=[8, 8, 4, 4],
        norm_layer=partial(nn.LayerNorm, eps=1e-6), depths=[3, 3, 5, 2],
        **kwargs)
    model.default_cfg = _cfg()
    if pretrained:
        model = load_model_weights(model, "van_tiny", kwargs)
    return model
 
 
@register_model
def van_small(pretrained=False, **kwargs):
    model = VAN(
        embed_dims=[64, 128, 320, 512], mlp_ratios=[8, 8, 4, 4],
        norm_layer=partial(nn.LayerNorm, eps=1e-6), depths=[2, 2, 4, 2],
        **kwargs)
    model.default_cfg = _cfg()
    if pretrained:
        model = load_model_weights(model, "van_small", kwargs)
    return model
 
@register_model
def van_base(pretrained=False, **kwargs):
    model = VAN(
        embed_dims=[64, 128, 320, 512], mlp_ratios=[8, 8, 4, 4],
        norm_layer=partial(nn.LayerNorm, eps=1e-6), depths=[3, 3, 12, 3],
        **kwargs)
    model.default_cfg = _cfg()
    if pretrained:
        model = load_model_weights(model, "van_base", kwargs)
    return model

2、添加YAML文件yolov8_SPPF_LSKA.yaml

添加到v8配置文件中ultralytics/cfg/models/v8/yolov8_SPPF_LSKA.yaml
在这里插入图片描述

# Ultralytics YOLO 🚀, AGPL-3.0 license
# YOLOv8 object detection model with P3-P5 outputs. For Usage examples see https://docs.ultralytics.com/tasks/detect

# Parameters
nc: 7  # number of classes
scales: # model compound scaling constants, i.e. 'model=yolov8n.yaml' will call yolov8.yaml with scale 'n'
  # [depth, width, max_channels]
  n: [0.33, 0.25, 1024]  # YOLOv8n summary: 225 layers,  3157200 parameters,  3157184 gradients,   8.9 GFLOPs
  s: [0.33, 0.50, 1024]  # YOLOv8s summary: 225 layers, 11166560 parameters, 11166544 gradients,  28.8 GFLOPs
  m: [0.67, 0.75, 768]   # YOLOv8m summary: 295 layers, 25902640 parameters, 25902624 gradients,  79.3 GFLOPs
  l: [1.00, 1.00, 512]   # YOLOv8l summary: 365 layers, 43691520 parameters, 43691504 gradients, 165.7 GFLOPs
  x: [1.00, 1.25, 512]   # YOLOv8x summary: 365 layers, 68229648 parameters, 68229632 gradients, 258.5 GFLOPs

# YOLOv8.0n backbone
backbone:
  # [from, repeats, module, args]
  - [-1, 1, Conv, [64, 3, 2]]  # 0-P1/2
  - [-1, 1, Conv, [128, 3, 2]]  # 1-P2/4
  - [-1, 3, C2f, [128, True]]
  - [-1, 1, Conv, [256, 3, 2]]  # 3-P3/8
  - [-1, 6, C2f, [256, True]]
  - [-1, 1, Conv, [512, 3, 2]]  # 5-P4/16
  - [-1, 6, C2f, [512, True]]
  - [-1, 1, Conv, [1024, 3, 2]]  # 7-P5/32
  - [-1, 3, C2f, [1024, True]]
  - [-1, 1, SPPF_LSKA, [1024, 5]]  # 9

# YOLOv8.0n head
head:
  - [-1, 1, nn.Upsample, [None, 2, 'nearest']]
  - [[-1, 6], 1, Concat, [1]]  # cat backbone P4
  - [-1, 3, C2f, [512]]  # 12

  - [-1, 1, nn.Upsample, [None, 2, 'nearest']]
  - [[-1, 4], 1, Concat, [1]]  # cat backbone P3
  - [-1, 3, C2f, [256]]  # 15 (P3/8-small)

  - [-1, 1, Conv, [256, 3, 2]]
  - [[-1, 12], 1, Concat, [1]]  # cat head P4
  - [-1, 3, C2f, [512]]  # 18 (P4/16-medium)

  - [-1, 1, Conv, [512, 3, 2]]
  - [[-1, 9], 1, Concat, [1]]  # cat head P5
  - [-1, 3, C2f, [1024]]  # 21 (P5/32-large)

  - [[15, 18, 21], 1, Detect, [nc]]  # Detect(P3, P4, P5)

3、添加SPPF_LSKA代码

(1)SPPF_LSKA代码添加到ultralytics/nn/modules/block.py
在这里插入图片描述

class SPPF_LSKA(nn.Module):
    """Spatial Pyramid Pooling - Fast (SPPF) layer for YOLOv5 by Glenn Jocher."""
 
    def __init__(self, c1, c2, k=5):  # equivalent to SPP(k=(5, 9, 13))
        super().__init__()
        c_ = c1 // 2  # hidden channels
        self.cv1 = Conv(c1, c_, 1, 1)
        self.cv2 = Conv(c_ * 4, c2, 1, 1)
        self.m = nn.MaxPool2d(kernel_size=k, stride=1, padding=k // 2)
        self.lska = LSKA(c_ * 4, k_size=11)
 
    def forward(self, x):
        """Forward pass through Ghost Convolution block."""
        x = self.cv1(x)
        y1 = self.m(x)
        y2 = self.m(y1)
        return self.cv2(self.lska(torch.cat((x, y1, y2, self.m(y2)), 1)))

(2)block.py代码顶部__all__中添加’SPPF_LSKA’,并导入LSKA模块,添加时一定注意使用英文标点符号

'SPPF_LSKA'
from .LSKA import LSKA

在这里插入图片描述

4、ultralytics/nn/modules/init.py注册模块

(1).block中导入SPPF_LSKA
在这里插入图片描述
(2)__all__中添加 ‘SPPF_LSKA’
在这里插入图片描述

5、ultralytics/nn/tasks.py注册模块

(2)在from ultralytics.nn.modules import导入SPPF_LSKA
在这里插入图片描述
(2)tasks.py中的def parse_modelif m in 语句中添加SPPF_LSKA

在这里插入图片描述

6、导入yaml文件训练

在这里插入图片描述

成功!!!!!!!
参考文章
https://blog.csdn.net/2301_78698967/article/details/139765522
https://blog.csdn.net/pope888/article/details/135536385

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.coloradmin.cn/o/2310465.html

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈,一经查实,立即删除!

相关文章

240 Vocabulary Words Kids Need to Know

《240 Vocabulary Words Kids Need to Know》是美国学乐出版社(Scholastic)推出的词汇学习系列练习册,专为美国小学阶段(G1-G6)设计,基于CCSS(美国共同核心州立标准)编写&#xff0c…

AI-Deepseek + PPT

01--Deepseek提问 首先去Deepseek问一个问题: Deepseek的回答: 在汽车CAN总线通信中,DBC文件里的信号处理(如初始值、系数、偏移)主要是为了 将原始二进制数据转换为实际物理值,确保不同电子控制单元&…

【五.LangChain技术与应用】【8.LangChain提示词模板基础:从入门到精通】

早上八点,你端着咖啡打开IDE,老板刚甩来需求:“做个能自动生成产品描述的AI工具”。你自信满满地打开ChatGPT的API文档,结果半小时后对着满屏的"输出结果不稳定"、"格式总出错"抓耳挠腮——这时候你真需要好好认识下LangChain里的提示词模板了。 一、…

LeetCode 718.最长重复子数组(动态规划,Python)

给两个整数数组 nums1 和 nums2 ,返回 两个数组中 公共的 、长度最长的子数组的长度 。 示例 1: 输入:nums1 [1,2,3,2,1], nums2 [3,2,1,4,7] 输出:3 解释:长度最长的公共子数组是 [3,2,1] 。 示例 2: 输…

python-leetcode-零钱兑换 II

518. 零钱兑换 II - 力扣(LeetCode) 这个问题是 完全背包问题 的一个变体,可以使用 动态规划 来解决。我们定义 dp[i] 为凑成金额 i 的硬币组合数。 思路: 定义 DP 数组 设 dp[i] 表示凑成金额 i 的组合数,初始化 dp[…

Sass 模块化革命:深入解析 @use 语法,打造高效 CSS 架构

文章目录 前言use 用法1. 模块化与命名空间2. use 中 as 语法的使用3. as * 语法的使用4. 私有成员的访问5. use 中with默认值6. use 导入问题总结下一篇预告: 前言 在上一篇中,我们深入探讨了 Sass 中 import 语法的局限性,正是因为这些问题…

利用Postman和Apipost进行API测试的实践与优化-动态参数

在实际的开发和测试工作中,完成一个API后对其进行简单的测试是一项至关重要的任务。在测试过程中,确保API返回的数据符合预期,不仅可以提高开发效率,还能帮助我们快速发现可能存在的问题。对于简单的API测试,诸如验证响…

【前端基础】Day 9 PC端品优购项目

目录 1. 品优购项目规划 1.1 网站制作流程 1.2 品优购项目整体介绍 1.3 学习目的 1.4 开发工具以及技术栈 1.5 项目搭建工作 1.6 网站favicon图标 1.7 网站TDK三大标签SEO优化 2. 品优购首页制作 2.1 常见模块类命名 2.2 快捷导航shortcut制作 2.3 header制作 2.4…

FFMPEG利用H264+AAC合成TS文件

本次的DEMO是利用FFMPEG框架把H264文件和AAC文件合并成一个TS文件。这个DEMO很重要,因为在后面的推流项目中用到了这方面的技术。所以,大家最好把这个项目好好了解。 下面这个是流程图 从这个图我们能看出来,在main函数中我们主要做了这几步&…

Linux搭建个人大模型RAG-(ollama+deepseek+anythingLLM)

本文是远程安装ollama deepseek,本地笔记本电脑安装anythingLLM,并上传本地文件作为知识库。 1.安装ollama 安装可以非常简单,一行命令完事。(有没有GPU,都没有关系,自动下载合适的版本) cd 到…

Docker 学习(二)——基于Registry、Harbor搭建私有仓库

Docker仓库是集中存储和管理Docker镜像的平台,支持镜像的上传、下载、版本管理等功能。 一、Docker仓库分类 1.公有仓库 Docker Hub:官方默认公共仓库,提供超过10万镜像,支持用户上传和管理镜像。 第三方平台:如阿里…

韩国互联网巨头 NAVER 如何借助 StarRocks 实现实时数据洞察

作者: Youngjin Kim Team Leader, NAVER Moweon Lee Data Engineer, NAVER 导读:开源无国界,在“StarRocks 全球用户精选案例”专栏中,我们将介绍韩国互联网巨头 NAVER 的 StarRocks 实践案例。 NAVER 成立于 1999 年&#xff0…

C语言学习笔记-初阶(30)深入理解指针2

1. 数组名的理解 在上一个章节我们在使用指针访问数组的内容时,有这样的代码: int arr[10] {1,2,3,4,5,6,7,8,9,10}; int *p &arr[0]; 这里我们使用 &arr[0] 的方式拿到了数组第⼀个元素的地址,但是其实数组名本来就是地址&…

【Wireshark 02】抓包过滤方法

一、官方教程 Wireshark 官网文档 : Wireshark User’s Guide 二、显示过滤器 2.1、 “数据包列表”窗格的弹出过滤菜单 例如,源ip地址作为过滤选项,右击源ip->prepare as filter-> 选中 点击选中完,显示过滤器&#…

MySQL基础四(JDBC)

JDBC(重点) 数据库驱动 程序会通过数据库驱动,和数据库打交道。 sun公司为了简化开发人员对数据库的统一操作,提供了一个Java操作数据库的规范。这个规范由具体的厂商去完成。对应开发人员来说,只需要掌握JDBC接口。 熟悉java.sql与javax.s…

基于CURL命令封装的JAVA通用HTTP工具

文章目录 一、简要概述二、封装过程1. 引入依赖2. 定义脚本执行类 三、单元测试四、其他资源 一、简要概述 在Linux中curl是一个利用URL规则在命令行下工作的文件传输工具,可以说是一款很强大的http命令行工具。它支持文件的上传和下载,是综合传输工具&…

cenos7网络安全检查

很多网络爱好者都知道,在Windows 2000和Windows 9x的命令提示符下可使用Windows系统自带的多种命令行网络故障检测工具,比如说我们最常用的ping。但大家在具体应用时,可能对这些命令行工具的具体含义,以及命令行后面可以使用的种…

蓝桥杯C组真题——巧克力

题目如下 思路 代码及解析如下 谢谢观看

The Rust Programming Language 学习 (三)

所有权 所有权(系统)是 Rust 最为与众不同的特性,它让 Rust 无需垃圾回收器(garbage collector)即可保证内存安全。因此,理解 Rust 中所有权的运作方式非常重要。 这里是非常重非常重的一个知识点,这里一…

【一个月备战蓝桥算法】递归与递推

字典序 在刷题和计算机科学领域,字典序(Lexicographical order)也称为词典序、字典顺序、字母序,是一种对序列元素进行排序的方式,它模仿了字典中单词的排序规则。下面从不同的数据类型来详细解释字典序: …