AWQ和GPTQ量化的区别

news2025/4/16 21:30:19

一、前言

本地化部署deepseek时发现,如果是量化版的deepseek,会节约很多的内容,然后一般有两种量化技术,那么这两种量化技术有什么区别呢?

二、量化技术对比

在模型量化领域,AWQGPTQ 是两种不同的量化技术,用于压缩和加速大型语言模型(如 deepseek-r1-distill-qwen)。以下是它们的详细说明:


1. AWQ(Activation-aware Weight Quantization

  • 定义

AWQ 是一种激活感知的权重量化技术,它通过分析模型激活值的分布来优化量化过程,从而减少量化带来的精度损失。

  • 核心思想

    • 在量化过程中,AWQ 不仅考虑模型权重,还考虑激活值(即模型中间层的输出)。

    • 通过识别对模型输出影响较大的权重,AWQ 会为这些权重分配更高的精度,而对影响较小的权重则使用更低的精度。

  • 优点

    • 相比传统的权重量化方法,AWQ 能够更好地保持模型性能。

    • 特别适合大规模语言模型,能够在压缩模型的同时减少精度损失。

  • 适用场景

    • 需要高压缩率(如 4-bit 量化)但又不希望显著降低模型性能的任务。


2. GPTQ(Generalized Post-Training Quantization

  • 定义

GPTQ 是一种后训练量化技术,专门为大规模语言模型设计。它通过对模型权重进行逐层优化,实现高效的量化。

  • 核心思想

    • GPTQ 在模型训练完成后,对每一层的权重进行量化。

    • 它使用一种近似二阶优化方法(如 Hessian 矩阵)来最小化量化误差,从而在低精度下保持模型性能。

  • 优点

    • 支持极低精度的量化(如 3-bit 或 4-bit),同时保持较高的模型性能。

    • 计算效率高,适合在实际部署中使用。

  • 适用场景

    • 需要极低精度量化(如 4-bit)的任务,尤其是资源受限的环境(如移动设备或嵌入式设备)。


3. AWQ 和 GPTQ 的区别

特性

AWQ

GPTQ

量化目标

权重 + 激活值

权重

优化方法

激活感知,动态调整量化精度

基于二阶优化(Hessian 矩阵)

精度损失

较低,适合高压缩率

较低,适合极低精度量化

计算复杂度

较高,需要分析激活值分布

较低,逐层优化

适用场景

高压缩率(如 4-bit),性能敏感任务

极低精度(如 3-bit 或 4-bit),资源受限环境

三、总结

量化技术确实是一种优化模型的有效方法,能够显著降低显存需求和计算成本。然而,在DeepSeek系列模型上应用量化技术时,虽然可以节约大量内存,但可能会导致模型性能下降,尤其是在低精度(如INT8或INT4)下,效果可能会大打折扣。因此:

1. 如果用于学习或实验,量化版模型是一个不错的选择,因为它可以在资源有限的环境中运行,帮助用户快速验证想法或进行初步测试。
2. 如果对效果有较高要求,或用于商用场景,建议优先使用未量化的原版模型,即使选择较小规模的模型(如DeepSeek-R1-7B或DeepSeek-R1-14B),也能在性能和资源消耗之间取得更好的平衡。

总之,量化技术适合资源受限的场景或实验性用途,但在追求高精度或商业部署时,建议谨慎使用量化版模型,优先考虑模型性能。


本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.coloradmin.cn/o/2307074.html

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈,一经查实,立即删除!

相关文章

线性模型 - 支持向量机

支持向量机(SVM)是一种用于分类(和回归)的监督学习算法,其主要目标是找到一个最佳决策超平面,将数据点分为不同的类别,并且使得分类边界与最近的数据点之间的间隔(margin&#xff09…

湖北中医药大学谱度众合(武汉)生命科技有限公司研究生工作站揭牌

2025年2月11日,湖北中医药大学&谱度众合(武汉)生命科技有限公司研究生工作站揭牌仪式在武汉生物技术研究院一楼101会议室举行,湖北中医药大学研究生院院长刘娅教授、基础医学院院长孔明望教授、基础医学院赵敏教授、基础医学院…

面试基础---深入解析 AQS

深入解析 AQS:从源码到实践,剖析 ReentrantLock 和 Semaphore 的实现 引言 在 Java 并发编程中,AbstractQueuedSynchronizer(AQS)是一个核心框架,它为构建锁和其他同步器提供了基础支持。ReentrantLock 和…

从 0 到 1,用 Python 构建超实用 Web 实时聊天应用

从 0 到 1,用 Python 构建超实用 Web 实时聊天应用 本文深入剖析如何运用 Python 的 Flask 框架与 SocketIO 扩展,搭建一个功能完备的 Web 实时聊天应用。从环境搭建、前后端代码实现,到最终运行展示,逐步拆解关键步骤&#xff0…

Vue2+Element实现Excel文件上传下载预览【超详细图解】

目录 一、需求背景 二、落地实现 1.文件上传 图片示例 HTML代码 业务代码 2.文件下载 图片示例 方式一:代码 方式二:代码 3.文件预览 图片示例 方式一:代码 方式二:代码 一、需求背景 在一个愉快的年后&#xff…

[记录贴] 火绒奇怪的进程保护

最近一次更新火绒6.0到最新版,发现processhacker的结束进程功能无法杀掉火绒的进程,弹窗提示如下: 可能是打开进程时做了权限过滤,火绒注册了两个回调函数如下: 但奇怪的是,在另外一台机器上面更新到最新版…

【蓝桥杯】每天一题,理解逻辑(1/90)【Leetcode 移动零】

文章目录 题目解析讲解算法原理【双指针算法思路】(数组下标充当指针)如何划分和执行过程大致 代码详情 题目解析 题目链接:https://leetcode.cn/problems/move-zeroes/description/ 题目意思解析 把所有的零移动到数组的末尾保持非零元素的相对顺序 理解了这两层…

pycharm远程连接服务器运行pytorch

Linux部署pytorch 背景介绍 不同的开源代码可能需要不同的实验环境和版本,这时候的确体现出Anaconda管理环境的好处了,分别搞一个独立环境方便管理。 有的教程建议选择较旧的版本,但笔者建议在条件允许的情况下安装最新版,本次…

java练习(41)

ps:题目来自力扣 最接近的三数之和 给你一个长度为 n 的整数数组 nums 和 一个目标值 target。请你从 nums 中选出三个整数,使它们的和与 target 最接近。 返回这三个数的和。 假定每组输入只存在恰好一个解。 import java.util.Arrays;class Solut…

PDF扫描档智能方向识别:多模型投票机制的实践测试 救活古典书籍

2025-02-22 20:10物联全栈123 尊敬的诸位!我是一名物联网工程师。关注我,持续分享最新物联网与AI资讯和开发实战。期望与您携手探寻物联网与 AI 的无尽可能 RAG知识库搭建的过程中,扫描档pdf的支持和准确率一直是个大家都不愿主动提起的事情…

轻松搭建:使用Anaconda创建虚拟环境并在PyCharm中配置

一、使用Anaconda创建虚拟环境 1. 安装Anaconda 2..conda常用的命令 3. 创建虚拟环境-以搭建MachineVision为例 4. 激活虚拟环境 5. 安装依赖包 二、PyCharm配置环境 在进行Python项目开发时,合理的环境管理是必不可少的,特别是当你在多个项目中…

驱动开发系列39 - Linux Graphics 3D 绘制流程(二)- 设置渲染管线

一:概述 Intel 的 Iris 驱动是 Mesa 中的 Gallium 驱动,主要用于 Intel Gen8+ GPU(Broadwell 及更新架构)。它负责与 i915 内核 DRM 驱动交互,并通过 Vulkan(ANV)、OpenGL(Iris Gallium)、或 OpenCL(Clover)来提供 3D 加速。在 Iris 驱动中,GPU Pipeline 设置 涉及…

MinIO整合SpringBoot实现文件上传、下载

文章目录 配置1. 部署MinIO服务2. 整合SpringBoot 功能实现1. 文件上传2. 文件下载 总结 配置 1. 部署MinIO服务 这里以docker为例: 安装minio命令docker run -p 9000:9000 -p 9001:9001 \ --name minio \ -v /path/to/data:/data \ -e "MINIO_ROOT_USERmin…

FreeRTOS(3)列表List

在 FreeRTOS 的源码中大量地使用了列表和列表项,因此想要深入学习 FreeRTOS,列表和列表项是必备的基础知识。这里所说的列表和列表项,是 FreeRTOS 源码中 List 和 List Item 的 直译,事实上, FreeRTOS 中的列表和列表项…

C++和OpenGL实现3D游戏编程【连载23】——几何着色器和法线可视化

欢迎来到zhooyu的C++和OpenGL游戏专栏,专栏连载的所有精彩内容目录详见下边链接: 🔥C++和OpenGL实现3D游戏编程【总览】 1、本节实现的内容 上一节课,我们在Blend软件中导出经纬球模型时,遇到了经纬球法线导致我们在游戏中模型光照显示问题,我们在Blender软件中可以通过…

Harmony开发笔记(未完成)

一、感想 作为一名拥有11年经验的Android开发者,我亲历了Android从高速发展到如今面临“僧多粥少”的过程。技术的世界瞬息万变,没有一种技术能够让人依赖一辈子。去年初,我自学了鸿蒙系统,并顺利通过了鸿蒙官方的初级和高级认。…

【Java面试】创建线程有哪几种方式

目录 1.继承Thread类 2.实现Runnable接口 3.实现Callable接口和FutureTask 4.使用Executor框架(线程池) Java并发编程中不同接口和类之间的关系 总结 1.继承Thread类 优点: 简单直观。直接继承Thread类,可以方便地使用Threa…

在Linux环境下利用MTCNN进行人脸检测(基于ncnn架构)

概述 本文将详细介绍如何在Linux环境下部署MTCNN模型进行人脸检测,并使用NCNN框架进行推理。 1. CMake的安装与配置 下载CMake源码 前往CMake官网下载,找到适合您系统的最新版本tar.gz文件链接,或者直接通过wget下载:CMake官方…

AI数字人系统源码部署解决方案!!!

一、开场白 如今,科技的步伐越来越快,数字人已经从想象中走进了我们的现实生活。它们在娱乐、教育、医疗等多个领域大放异彩。了解数字人的代码开发技术,能让我们更好地理解其工作原理,为那些想在这一领域大展拳脚或者用数字人技…

W803|联盛德|WM IoT SDK2.X测试|(1)开箱:开发板及说明

前几天关注的联盛德微电子新推出了WM IoT SDK2.X,正式发布后,邀请用户参加“免费试用,赢千元大礼”活动,填写信息,等待统一发送,很快收到了板子。 活动地址:联盛德微电子WM IoT SDK2.X正式发布…