机器学习 - 进一步理解最大似然估计和高斯分布的关系

news2025/2/11 6:07:36

一、高斯分布得到的是一个概率吗?

高斯分布(也称为正态分布)描述的是随机变量在某范围内取值的概率分布情况。其概率密度函数(PDF)为:

其中,μ 是均值,σ 是标准差。

需要注意的是,概率密度函数的值并不直接表示概率,而是表示概率密度。要计算随机变量在某个区间内取值的概率,需要对该区间上的概率密度函数进行积分。例如,计算随机变量 X 在区间 [a, b] 内取值的概率 P(a≤X≤b)时,需要计算:

因此,高斯分布本身并不是一个具体的概率值,而是描述随机变量取值的分布情况。通过对概率密度函数进行积分,可以得到特定区间内的概率。

二、高斯分布的积分怎么计算 ?

高斯分布的概率密度函数(PDF)为:

其中,μ 是均值,σ 是标准差。

要计算随机变量 X 在区间 [a, b] 内取值的概率,即 P(a≤X≤b),需要对概率密度函数在该区间上进行积分:

然而,直接对上述函数进行积分并不容易。因此,通常采用标准化的方法,将任意均值 μ 和标准差 σ 的正态分布转换为标准正态分布(均值为 0,标准差为 1),然后使用标准正态分布的累积分布函数(CDF)来计算概率。

标准化步骤

  1. 标准化变量:将随机变量 X 转换为标准正态分布的随机变量 Z:

  2. 转换积分区间

  3. 使用标准正态分布的累积分布函数:标准正态分布的累积分布函数 Φ(z)定义为:

由于标准正态分布的累积分布函数没有初等函数形式,通常通过数值方法或查表来获取其值。

需要注意的是,虽然高斯积分(即对 e^{-x^2} 在整个实数范围内的积分)有解析解,但对于一般形式的高斯分布的积分,通常需要借助数值方法或累积分布函数来计算。

三、对于离散的数据,高斯分布得到的是一个概率吗?

高斯分布(也称为正态分布)通常用于描述连续型数据的概率分布。然而,对于离散型数据,也可以定义相应的离散高斯分布。在离散高斯分布中,随机变量取离散值,每个值对应一个概率质量。因此,对于离散数据,离散高斯分布可以为每个可能的取值分配一个概率。

需要注意的是,离散高斯分布在某些领域(如格密码学)中有特定的应用。在这些应用中,离散高斯分布用于对格点进行采样,以满足特定的概率分布要求。

总之,对于离散数据,离散高斯分布可以为每个可能的取值分配一个概率,从而描述数据的分布特征。

四、离散高斯分布和高斯分布有什么区别?在数据表达式上有区别吗?

高斯分布(也称为正态分布)和离散高斯分布主要区别在于随机变量的取值范围和相应的概率表达方式。

高斯分布

  • 取值范围:连续型随机变量,取值为实数范围内的所有连续值。

  • 概率表达:使用概率密度函数(PDF)来描述,其形式为:

离散高斯分布

  • 取值范围:离散型随机变量,取值为一组离散的数值,通常是整数或特定的离散集合。

  • 概率表达:使用概率质量函数(PMF)来描述,即对每个离散取值 k,定义其概率为:

    其中,S 是归一化常数,确保所有概率之和为 1。

数据表达式上的区别

  • 高斯分布:由于变量取值连续,概率密度函数用于描述在特定点附近的概率密度。

  • 离散高斯分布:由于变量取值离散,概率质量函数用于描述每个具体取值的概率。

需要注意的是,离散高斯分布在某些领域(如格密码学)中有特定应用。在这些应用中,离散高斯分布用于对格点进行采样,以满足特定的概率分布要求。

总之,高斯分布和离散高斯分布的主要区别在于随机变量的取值范围(连续 vs. 离散)以及相应的概率表达方式(概率密度函数 vs. 概率质量函数)。

在概率质量函数(PMF)中,归一化常数 S 的作用是确保所有离散取值的概率之和等于 1。在概率密度函数(PDF)中,归一化常数的作用是确保整个连续范围内的概率密度函数的积分等于 1。因此,归一化常数 S 在 PMF 和 PDF 中的具体数值通常不同,但它们的作用是一致的,都是为了确保总概率为 1。

五、线性回归中,采用最大似然估计,为什么不采用离散高斯分布?而是采用高斯分布?

在线性回归中,采用最大似然估计时,通常假设误差项(即模型预测值与真实值之间的差异)服从连续的高斯分布(正态分布),而不是离散高斯分布。这是因为线性回归模型主要用于处理连续型数据,目标变量通常是连续的,因此误差项也被视为连续随机变量。

原因如下

如果采用离散高斯分布,意味着假设误差项是离散的,这与连续型目标变量的性质不符。因此,在线性回归的最大似然估计中,采用连续的高斯分布来建模误差项是更合理的选择。

需要注意的是,最小二乘法可以视为在误差项服从正态分布假设下最大似然估计的特例。因此,采用高斯分布的假设与最小二乘法的应用是一致的。

六、但是所观察的数据集是离散的独立样本,不适用离散高斯分布,这怎么理解呢?

您提到的观察数据集是离散的独立样本,这在统计建模中是常见的。虽然数据点是离散的,但在线性回归中,我们关注的是这些数据点的分布趋势和误差项的性质。

理解要点

  1. 数据点的离散性:在实际应用中,收集到的数据通常是离散的独立样本。这些样本代表了从总体中抽取的有限观测值。

  2. 误差项的连续性假设:在线性回归模型中,假设误差项(即模型预测值与真实值之间的差异)服从均值为零、方差为 σ2 的正态分布。这个假设并不要求数据点本身是连续的,而是认为误差项在总体上呈现连续的正态分布特征。

  3. 中心极限定理的应用:根据中心极限定理,当多个独立随机变量的影响叠加时,其总和趋向于服从正态分布。因此,即使单个观测值是离散的,多个独立误差项的组合也可以近似为正态分布。

  4. 模型的适用性:线性回归模型适用于连续型因变量的预测。即使观测数据是离散的独立样本,只要满足线性回归的基本假设(如线性关系、误差项独立同分布且服从正态分布等),模型仍然有效。

综上,虽然观测数据是离散的独立样本,但在线性回归中,我们对误差项的分布作出正态分布的假设,以便于模型的建立和推导。这种方法在统计学中被广泛接受,并在实践中证明是有效的。

七、线性回归中,采用最大似然估计,既然不是离散高斯分布,为什么观察数据集在对应高斯分布的乘积,就是对应的似然估计函数呢?

在线性回归中,采用最大似然估计时,虽然观测数据集由离散的独立样本组成,但我们假设这些样本的误差项服从连续的正态分布(高斯分布)。基于这一假设,构建的似然函数是各观测值在给定模型参数下出现的概率密度的乘积。

具体理解如下

因此,尽管观测数据是离散的独立样本,但通过假设误差项服从连续的正态分布,我们能够构建似然函数,并通过最大化该函数来估计模型参数。这种方法在统计学和机器学习中被广泛应用。

那么不应该积分吗?为什么直接乘积就是似然函数呢?

在最大似然估计(MLE)中,似然函数是通过将所有观测数据点的概率密度函数(对于连续型数据)或概率质量函数(对于离散型数据)相乘得到的。这是因为我们假设每个观测数据点是独立同分布的,因此联合概率密度(或联合概率质量)是各自概率的乘积。

为什么不需要积分?

积分通常用于计算连续随机变量在某一区间内的概率。然而,在MLE中,我们关注的是给定参数下观测数据出现的联合概率,而不是某一区间内的概率质量。因此,对于独立同分布的观测数据,直接将每个数据点的概率相乘即可得到联合概率,这就是似然函数。

总结

在最大似然估计中,由于观测数据被假设为独立同分布,因此其联合概率是各自概率的乘积。这使得似然函数可以通过将所有观测数据点的概率相乘得到,而不涉及积分运算。

八、似然函数可以看成是联合概率密度函数吗?

似然函数可以看作是观测数据的联合概率密度函数(对于离散情况是概率质量函数),但是它是考虑参数的函数,而不是数据的函数。关键是,似然函数本身不是概率分布,因此它不一定被规范化为总和或积分为1。在最大似然估计的语境中,似然函数确实是给定参数的联合PDF。

似然函数确实是基于联合概率密度函数(或概率质量函数)的表达形式,但两者在使用时有不同的解释和作用。具体来说:

  1. 联合概率密度函数
    当我们讨论连续随机变量时,联合概率密度函数 p(x1,x2,…,xn∣θ)描述了在给定参数 θ 的条件下,随机变量 x1,x2,…,xn 同时取某些特定值的概率“密度”。这通常被看作一个关于数据 x 的函数,在参数 θ 固定时计算数据出现的可能性。

  2. 似然函数
    在最大似然估计中,我们将已观测到的数据视为已知(固定),而把参数 θ 看作未知的变量。此时,似然函数就是将联合概率密度函数看作关于参数的函数,记作

    L(θ)=p(x1,x2,…,xn∣θ)

    尽管数学表达式相同,但在似然函数中,我们关注的是不同参数值下,观测数据出现的可能性大小。注意,似然函数通常不归一化,它仅用于比较不同参数值的相对“优劣”。

总结:

  • 从形式上看,似然函数就是联合概率密度函数;
  • 但从用途和解释上看,当我们固定数据、将参数视为变量时,这个函数被称为似然函数,并用于估计最优参数。

这种“角色转变”的思想是最大似然估计的核心:使用数据的联合概率密度(或质量)来反过来推断参数。

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.coloradmin.cn/o/2296169.html

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈,一经查实,立即删除!

相关文章

Office/WPS接入DeepSeek等多个AI工具,开启办公新模式!

在现代职场中,Office办公套件已成为工作和学习的必备工具,其功能强大但复杂,熟练掌握需要系统的学习。为了简化操作,使每个人都能轻松使用各种功能,市场上涌现出各类办公插件。这些插件不仅提升了用户体验,…

如何在Android Studio中开发一个简单的Android应用?

Android Studio是开发Android应用的官方集成开发环境(IDE),它提供了许多强大的功能,使得开发者能够高效地创建Android应用。如果你是Android开发的初学者,本文将引导你如何在Android Studio中开发一个简单的Android应用…

第40天:Web开发-JS应用VueJS框架Vite构建启动打包渲染XSS源码泄露代码审计

#知识点 1、安全开发-VueJS-搭建启动&打包安全 2、安全开发-VueJS-源码泄漏&代码审计 一、Vue搭建创建项目启动项目 1、Vue 框架搭建->基于nodejs搭建,安装nodejs即可 参考:https://cn.vuejs.org/ 已安装18.3或更高版本的Node.js 2、Vue 创建…

[数据结构] Set的使用与注意事项

目录 Set的说明 常见方法说明 注意事项 TreeSet使用案例 Set的说明 Set与Map主要的不同有两点: Set是继承自Collection的接口类,Set中只存储了Key. 常见方法说明 方法解释boolean add(E e)添加元素,但重复元素不会被添加成功void clear()清空集合boolean contains(Object…

安当SLA操作系统登录双因素认证:全方位保障Windows系统登录安全

一、产品概述 在当今数字化时代,Windows系统面临着诸多安全挑战,如弱口令问题等。安当SLA(System Login Agent)作为一款强大的双因素登录认证产品,通过支持OTP动态口令和USBKey硬件令牌认证,有效解决多种W…

操作系统|ARM和X86的区别,存储,指令集

文章目录 主频寄存器寄存器在硬件中的体现是什么寄存器的基本特性硬件实现寄存器类型 内存和寄存器的区别内存(Memory)和磁盘(Disk)指令的执行ARM Cortex-M3与Thumb-2指令集Thumb-2 与流水线虚拟地址指令的执行 多核CPU芯片间的通…

Mp4视频播放机无法播放视频-批量修改视频分辨率(帧宽、帧高)

背景 家人有一台夏新多功能 视频播放器(夏新多功能 视频播放器),用来播放广场舞。下载了一些广场舞视频, 只有部分视频可以播放,其他视频均无法播放,判断应该不是帧速率和数据速率的限制, 分析可能是播放器不支持帧高度大于720的视频。由于视频文件较多,需要借助视频编…

【浏览器多开】Google Chrome 谷歌浏览器分身术

谷歌浏览器分身术(多开): 复制已有谷歌浏览器图标—>右键–>属性的目标栏中,添加 --user-data-dir自定义文件夹路径 参数。 例如: C:\MySpace\02Installed\Chrome\Chrome-bin\99.0.4844.51\chrome.exe –user-d…

《LeetCode Hot100》 Day01

Day01 轮转数组 思路: (1) 使用O(1) 空间复杂度解决,就需要原地解决,不能创建新的数组。 (2) 先整体反转数组,再反转前k个数,再反转剩下的数。即可完整本题。 &…

【图片合并转换PDF】如何将每个文件夹下的图片转化成PDF并合并成一个文件?下面基于C++的方式教你实现

医院在为患者进行诊断和治疗过程中,会产生大量的医学影像图片,如 X 光片、CT 扫描图、MRI 图像等。这些图片通常会按照检查时间或者检查项目存放在不同的文件夹中。为了方便医生查阅和患者病历的长期保存,需要将每个患者文件夹下的图片合并成…

uniapp实现人脸识别(不使用三方插件)

uniapp实现人脸识别 内容简介功能实现上传身份证进行人脸比对 遇到的问题 内容简介 1.拍摄/相册将身份证照片上传到接口进行图片解析 2.使用live-pusher组件拍摄人脸照片,上传接口与身份证人脸进行比对 功能实现 上传身份证 先看下效果 点击按钮调用chooseImage…

2025全新JSP简约博客平台-免费开源

前言 最近收到不少同学期末作业的需求,都还是JSP的老技术,介于现在很多网上可以找到的JSP现有项目,要么就是很老好几年前的,要么就是搞了一通不仅乱码还各自报错失败的,总之就是资源有限,于是我花了一星期…

计算机视觉语义分割——Attention U-Net(Learning Where to Look for the Pancreas)

计算机视觉语义分割——Attention U-Net(Learning Where to Look for the Pancreas) 文章目录 计算机视觉语义分割——Attention U-Net(Learning Where to Look for the Pancreas)摘要Abstract一、Attention U-Net1. 基本思想2. Attention Gate模块3. 软注意力与硬注意力4. 实验…

基于SpringBoot的“4S店车辆管理系统”的设计与实现(源码+数据库+文档+PPT)_2025-02-10

基于SpringBoot的“4S店车辆管理系统”的设计与实现(源码数据库文档PPT) 开发语言:Java 数据库:MySQL 技术:SpringBoot 工具:IDEA/Ecilpse、Navicat、Maven 系统展示 系统功能结构图 系统登录界面图 管理员功能界…

ESP-IDF学习记录(6)

这篇不知道起什么标题,因为已经卡滞很久了,从年前到现在,但也没停止探索 1.烧录 用的小型加热台,这步对我来说最难,自己没有焊接过QFN32的封装 总结一下目前遇到的问题: 1)5V供电选成了12V转…

【机器学习与数据挖掘实战】案例13:基于BP神经网络模型的家用热水器用户行为分析与事件识别

【作者主页】Francek Chen 【专栏介绍】 ⌈ ⌈ ⌈机器学习与数据挖掘实战 ⌋ ⌋ ⌋ 机器学习是人工智能的一个分支,专注于让计算机系统通过数据学习和改进。它利用统计和计算方法,使模型能够从数据中自动提取特征并做出预测或决策。数据挖掘则是从大型数…

Windows 植物大战僵尸杂交版

植物大战僵尸杂交版 链接:https://pan.xunlei.com/s/VOIjttp8EzfL9fXO6S6ekvZYA1?pwdw8cm# 作者: B站UP主 潜艇伟伟迷

【学习笔记】计算机网络(三)

第3章 数据链路层 文章目录 第3章 数据链路层3.1数据链路层的几个共同问题3.1.1 数据链路和帧3.1.2 三个基本功能3.1.3 其他功能 - 滑动窗口机制 3.2 点对点协议PPP(Point-to-Point Protocol)3.2.1 PPP 协议的特点3.2.2 PPP协议的帧格式3.2.3 PPP 协议的工作状态 3.3 使用广播信…

Blazor-<select>

今天我们来说说<select>标签的用法&#xff0c;我们还是从一个示例代码开始 page "/demoPage" rendermode InteractiveAuto inject ILogger<InjectPage> logger; <h3>demoPage</h3> <select multiple>foreach (var item in list){<…

Best practice-ThreadLocal高并发场景的最佳实践

关于ThreadLocal基础信息 引用一段来自ThreadLocal源码中的doc注释来说明其特性&#xff1a; This class provides thread-local variables. These variables differ from their normal counterparts in that each thread that accesses one (via its get or set method) has …